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We study nonlinear interferometry applied to a measurement of atomic spin and demonstrate a
sensitivity that cannot be achieved by any linear-optical measurement with the same experimental
resources. We use alignment-to-orientation conversion, a nonlinear-optical technique from optical
magnetometry, to perform a nondestructive measurement of the spin alignment of a cold 87Rb atomic
ensemble. We observe state-of-the-art spin sensitivity in a single-pass measurement, in good agreement
with covariance-matrix theory. Taking the degree of measurement-induced spin squeezing as a figure of
merit, we find that the nonlinear technique’s experimental performance surpasses the theoretical
performance of any linear-optical measurement on the same system, including optimization of probe
strength and tuning. The results confirm the central prediction of nonlinear metrology, that superior scaling
can lead to superior absolute sensitivity.
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I. INTRODUCTION

Many sensitive instruments naturally operate in non-
linear regimes. These instruments include optical magne-
tometers employing spin-exchange relaxation-free [1] and
nonlinear [2] magneto-optic rotation and interferometers
employing Bose-Einstein condensates [3–6]. State-of-the-
art magnetometers [7–12] and interferometers [13–20] are
quantum-noise limited and have been enhanced using
techniques from quantum metrology [21–24].
A nonlinear interferometer experiences phase shifts ϕ

that depend on N, the particle number, e.g., ϕ ¼ κNY for a
Kerr-type nonlinearity Y, where κ is a coupling constant.
This number-dependent phase implies a sensitivity
ΔY ≥ ðκNÞ−1Δϕ, and if the nonlinear mechanism does
not add noise beyond the Δϕ ¼ N−1=2 shot noise, the
sensitivity ΔY ∝ N−3=2 even without quantum enhance-
ment. Such a nonlinear system was identified in theory by
Boixo et al. [25] and implemented with good agreement
by Napolitano et al. [8,26]. In contrast, entanglement-
enhanced linear measurement achieves at best the so-called
“Heisenberg limit” Δϕ ¼ N−1. The faster scaling of the
nonlinear measurement suggests a decisive technological
advantage for sufficiently large N [25,27–36]. On the other
hand, no experiment has yet employed improved scaling to
give superior absolute sensitivity, and several theoretical

works [37–40] cast doubt upon this possibility for practical
and/or fundamental reasons.
Here, we demonstrate that a quantum-noise-limited

nonlinear measurement can indeed achieve a sensitivity
unreachable by any linear measurement with the same
experimental resources. We use nonlinear Faraday rotation
by alignment-to-orientation conversion (AOC) [2], a prac-
tical magnetometry technique [2], to make a nondestructive
measurement of the spin alignment of a sample of 87Rb
atoms [11,41]. AOC measurement employs an optically-
nonlinear polarization interferometer, in which the rotation
signal is linear in an atomic variable but nonlinear in the
number of photons. We have recently used AOC to
generate spin squeezing by quantum nondemolition meas-
urement [42], resulting in the first spin-squeezing-enhanced
magnetometer [11]. Here, we show that this state-of-the-art
sensitivity results from the nonlinear nature of the meas-
urement and could not be achieved with a linear measure-
ment. We demonstrate a scaling ΔJy ∝ N−3=2

L , where NL is
the photon number and Jy is an atomic spin-alignment
component, in good agreement with theory describing the
interaction of collective spin operators and optical Stokes
operators. Relative to earlier nonlinear strategies [8], AOC
allows increasing NL by an order of magnitude, giving
20 dB more signal and 10 dB less photon shot noise. The
resulting spin sensitivity surpasses by 9 dB the best-
possible sensitivity of a linear Jy measurement with the
same resources (photon number and allowed damage to the
state). Theory shows that this advantage holds over all
metrologically relevant conditions.
Understanding the limits of such nonlinear measure-

ments has implications for instruments that naturally
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operate in nonlinear regimes, such as interferometers
employing Bose-Einstein condensates [15,17,43] and opti-
cal magnetometers employing spin-exchange relaxation-
free [1] and nonlinear [2] magneto-optic rotation. Similar
nondestructive measurements are used in state-of-the-art
optical magnetometers [44–46] and to detect the magneti-
zation of spinor condensates [47–49] and lattice gases [19],
and are the basis for proposals for preparing [50–53]
and detecting [54,55] exotic quantum phases of ultracold
atoms.

II. NONLINEAR SPIN MEASUREMENTS

We work with an ensemble of NA ∼ 106 laser-cooled
87Rb atoms held in an optical dipole trap, as illustrated in
Fig. 1(a) and described in detail in Ref. [56]. The atoms are
prepared in the f ¼ 1 hyperfine ground state and interact
dispersively with light pulses of duration τ via an effective
Hamiltonian [57]

Ĥeff ¼ κ1Ĵz ~Sz þ κ2ðĴx ~Sx þ Ĵy ~SyÞ − γFB · F; ð1Þ

where the coupling coefficients κ1;2 are proportional to the
vectorial and tensorial polarizability, respectively, and γF is

the ground-state gyromagnetic ratio. Here, the operators Ĵi
describe the collective atomic spin, and the optical polari-
zation is described by the pulse-integrated Stokes operatorsR
dt ~SiðtÞ≡ Ŝi (see Appendix A). Ĵx and Ĵy represent the

collective spin alignment, i.e., Raman coherences between
states with Δmf ¼ 2, and Ĵz describes the collective spin
orientation along the quantization axis, set by the direction
of propagation of the probe pulses. Ŝx and Ŝy describe
linear polarizations, while Ŝz is the degree of circular
polarization, i.e., the ellipticity.
In regular Faraday rotation, the collective spin orienta-

tion Ĵz is detected indirectly by measuring the polarization
rotation of an input optical pulse due to the first term in
Eq. (1). Typically, the input optical pulse is Ŝx polarized,
and the polarization rotation is detected in the Ŝy basis.
Detection of the collective spin alignment Jy (or Jx) requires
making use of the second term in Eq. (1), and can be
achieved with either a linear or a nonlinear measurement
strategy, as we now describe (see Fig. 1).
In a linear measurement, the polarization rotation due

to the term κ2ŜyĴy is directly measured—e.g., an input
Ŝx-polarized probe (i.e., hŜxi ¼ NL=2) is rotated toward Ŝz
by a small angle ΦLTE ¼ κ2Ĵy. We refer to this type of
strategy as linear-to-elliptical (LTE) measurement of Jy. It
gives quantum-limited sensitivity

ðΔJyÞ2LTE ¼ ðΔŜðinÞz Þ2
κ22S

2
x

¼ 1

κ22

1

NL
; ð2Þ

i.e., with shot-noise scaling. Here and in the following, we
use the notation Jy ≡ hĴyi for expectation values. The same
sensitivity is achieved with other linear measurement
strategies employing different input polarizations. Note
that for large detunings, κ1 ∝ Δ−1 ≫ κ2 ∝ Δ−2, so detec-
tion of Jy with this method is less sensitive than regular
Faraday-rotation detection of Ĵz.
AOC measurement of Jy employs Ĥeff twice and

gives a signal nonlinear in NL: The term κ2ŜxĴx produces
a rotation of Ĵy toward Ĵz by an angle θAOC ¼ κ2Sx=2.
Simultaneously, the term κ1ŜzĴz produces a rotation of Ŝx
toward Ŝy by an angle ΦAOC ¼ κ1Ĵz. The net effect is an
optical rotation ΦAOC ¼ κ1κ2NLĴy=4, which is observed by
detecting Ŝy. The quantum-noise-limited sensitivity of this
nonlinear measurement is (see Appendix C)

ðΔJyÞ2AOC ¼
�

4

κ2NL

�
2
�

1

κ21NL
þ NA

4

�
ð3Þ

with scaling ΔJy ∝ N−3=2
L crossing over to ΔJy ∝ N−1

L at
large NL. Using the Hamiltonian in second-order, AOC
gives a signal ∝ κ1κ2NL versus ∝ κ2 for LTE, which is an
advantage at large detuning, where κ1 ≫ κ2.
Both strategies employ the same measurement resources,

namely, an Ŝx-polarized coherent-state probe, so that the
quantum uncertainties on the input-polarization angles are
ΔŜðinÞy =Sx ¼ ΔŜðinÞz =Sx ¼ N−1=2

L . In addition to the coherent

FIG. 1. Alignment-to-orientation conversion measurement of
atomic spins. (a) An unknown field Bz rotates an initially
Ĵx-polarized state in the Ĵx − Ĵy plane. The Ĵy component is
detected using an Ŝx-polarized probe, which produces a rotation
of Ĵy toward Ĵz by an angle θAOC ¼ κ2Ŝx=2. (b) Simultaneously,
paramagnetic Faraday rotation produces a rotation of Ŝx toward
Ŝy. The net effect is a rotation ΦAOC ¼ κ1κ2NLĴy=4, which is
observed by detecting Ŝy. In an alternative strategy, the linear-to-
elliptical rotation of Ŝx toward Ŝz by the angleΦLTE ¼ κ2Ĵy can be
observed by detecting Ŝz. (c) Experimental geometry. Near-
resonant probe pulses pass through a cold cloud of 87Rb atoms
and experience a Faraday rotation by an angle proportional to the
on-axis collective spin Ĵz. Atoms are prepared in a coherent spin
state Ĵx via optical pumping. The pulses are initially polarized
with maximal Stokes operator Ŝx, measured at the input by a
photodiode (PD3). Rotation toward Ŝy is detected by a balanced
polarimeter consisting of a wave plate (WP), polarizing beam
splitter (PBS), and photodiodes (PD1;2).
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rotations produced by Ĥeff, spontaneous scattering of probe
photons causes two kinds of “damage” to the spin state:
loss of polarization (decoherence) and added spin noise.
The tradeoff between information gain and damage is what
ultimately limits the sensitivity of the Jy measurement
[12,42,57]. For equal NL, the damage is the same for the
LTE and AOC measurements because they have the same
initial conditions and differ only in whether Ŝz or Ŝy is
detected.
From these scaling considerations, the AOC measure-

ment should surpass the LTE measurement in sensitivity,
ðΔJyÞ2AOC < ðΔJyÞ2LTE for NL ≳ 16=ðκ21NLÞ þ 4NA, but
only if such a large NL does not cause excessive scattering
damage to Jy. In atomic ensembles, the achievable
information-damage tradeoff is determined by the optical
depth (OD) [57], which, in principle, can grow without
bound. For high-OD ensembles, the nonlinear measure-
ment will, through advantageous scaling, surpass the best-
possible linear measurement of the same quantity, under
the same conditions. In what follows, we confirm this
prediction experimentally, by comparing measured AOC
sensitivity to the calculated best-possible sensitivity of the
LTE measurement.

III. EXPERIMENTAL DATA AND ANALYSIS

The experimental system, illustrated in Fig. 1(c), is the
same as in Ref. [11], with full details given in Ref. [56]. After
loading up to 6 × 105 laser-cooled atoms into a single-beam
optical dipole trap, we prepare a Ĵx-aligned coherent spin
state via optical pumping Jx ¼ hĴxi ¼ NA=2. An (unknown)
bias field Bz rotates the state in the Ĵx − Ĵy plane at a rate
2ωL, where ωL ¼ −γFBz is the Larmor frequency, to
produce Jy ¼ hĴyi ¼ sinð2ωLtÞĴx, which we then detect
via AOC measurement. We probe the atoms with a sequence
of 2-μs-long pulses of light sent through the atoms at 5-μs

intervals and record ŜðoutÞy with a shot-noise-limited balanced
polarimeter. The pulses have a detuningΔ=2π¼−600MHz,
i.e., to the red of the F ¼ 1 → F0 ¼ 0 transition on the D2

line. To study noise scaling, we vary both the number of
photons per pulse NL and the number of atoms NA in the
initial coherent spin state.
In Fig. 2, we plot the observed signal Sy ¼ hŜðoutÞy i versus

Sx for various values of Jx. The signal is extracted from a
differential measurement between the first pulse, a single
pulse AOC measurement, and a baseline composite quan-
tum nondemolition measurement constructed from the
second and third pulses (see Appendix B). As expected,
we observe a signal that increases quadratically with Sx. We
extract Jy from a fit to data using the function Sy ¼
ðκ1κ2=2ÞJyS2x (solid lines in Fig. 2), where the coupling
constants κ1¼1.47×10−7 rad=spin and κ2 ¼ 7.54 ×
10−9 rad=spin are independently measured [11]. In the
inset, we plot the measured Jy versus Jx. For small rotation
angles, Jy ≃ 2ωLtJx, where t ¼ 7.5 μs is the time between

the centers of the baseline and AOC measurements. A
linear fit to the data yields Bz ¼ 103� 3 nT.
The measured sensitivity ΔJy ¼ ΔŜy=ðκ1κ2S2xÞ is

obtained from the measured readout variation ΔŜy and
the slope ∂Sy=∂Jy ¼ κ1κ2S2x, with the contribution due to
the atomic projection noise subtracted (see Appendix C).
As shown in Fig. 3, we observe nonlinear enhanced
scaling ΔJy ∝ N−3=2

L over more than an order of magni-
tude in NL. For these data, Jx ¼ 2.8 × 105 and
Jy ¼ 1.9 × 104. The data are well described by the
theoretical model of Eq. (3), plus a small offset due to
electronic noise, which is independently measured (see
Appendix D). We observe a minimum ΔJy ¼ 1230� 90

spins with NL ¼ 2 × 108 photons.
The AOC measurement sensitivity crosses below the

ideal LTE measurement ðΔJyÞLTE ¼ ð1=κ2ÞN−1=2
L (dashed

green line in Fig. 3) withNL ¼ 3 × 107 photons, indicating
that, for our experimental parameters, the nonlinear meas-
urement is the superior measurement of Ĵy. For comparison,
we also compare our measurement of the alignment Jy with
the nonlinear Faraday-rotation measurement of Jz reported
in Napolitano et al. [8] (light blue circles and dotted line
in Fig. 3). We note, in particular, that the advantageous
scaling of the current measurement extends to an order-of-
magnitude larger NL than reported in that work.
Nondestructive, projection-noise-limited measurement

can be used to prepare a conditional spin-squeezed atomic
state [58]. Generation of squeezing is a useful metric for the
measurement sensitivity since it takes into account damage
done to the atomic state by the optical probe [42,59]. Here,
it is important to note that although the AOC signal is
proportional to the atomic spin alignment Jy, quantum noise
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FIG. 2. Alignment-to-orientation conversion measurement

of Jy. In the main frame, we plot the signal Sy ¼ hŜðoutÞy i
of the AOC measurement as a function of Sx for various Jx.
We find the measured signal Jy from fit to data using the
function Sy ¼ ðκ1κ2=2ÞJyS2x (solid lines). Error bars represent
�1σ statistical errors. Inset: Measured Jy versus Jx. For small
rotation angles, Jy ≃ 2ωLBztJx.
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from the spin orientation Ĵz is mixed into the measurement:
Scaled to have units of spins, the Faraday-rotation signal
from the AOC measurement is Φ̂≡ ðcos θ=κ1SxÞ
ŜðoutÞy ¼ ðcos θ=κ1SxÞŜðinÞy þ K̂ðinÞ

θ , which describes a
nondestructive measurement of the mixed alignment-

orientation variable K̂ðinÞ
θ ≡ĴðinÞz cosθþĴðinÞy sinθ, where

tan θ≡ κ2Sx=2 (see Appendix A). K̂θ is the variable that
should be squeezed to enhance the sensitivity of the AOC
measurement. Metrological enhancement is quantified by

the spin-squeezing parameter ξ2m ≡ ðΔK̂ðoutÞ
θ Þ2Jx=2jJðoutÞx j2

[59] (see Appendix E). With NL¼2×108 and Jx¼
2.8×105, we observe a conditional noise 2.3�0.5 dB
below the projection-noise limit and ξ2m ¼ 0.7� 0.2 or
1.5� 0.8 dB of metrologically significant spin squeezing
(inset of Fig. 3). We note that for our experimental
parameters, LTE would not induce spin squeezing.

IV. DISCUSSION

The experiment shows AOC surpassing LTE
through improved scaling at the specific detuning of

Δ=2π ¼ −600 MHz. It is important to ask whether this
advantage persists under other measurement conditions.
A good metric for the optimum measurement is the number
of photons NL required to achieve a given sensitivity
(see Appendix F). In Fig. 4(a), we plot the calculated
NL required to reach projection-noise-limited sensitivity
for the two measurement strategies, i.e., ðΔJyÞ2AOC ¼
ðΔJyÞ2LTE ¼ NA=4 for our experimental parameters. For
comparison, we also plot curves showing the damage ηsc to
the atomic state due to spontaneous emission. We see that
the AOC strategy achieves the same sensitivity with fewer
probe photons (and thus causes less damage) except very
close to the atomic resonances, i.e., except in regions where
large scattering rates make the quantum nondemolition
measurement impossible anyway. Another important met-
ric is the achievable metrologically significant squeezing,
found by optimizing ξ2m over NL at any given detuning. In
Fig. 4(b), we show this optimal ξ2m versus detuning. The
global optimum squeezing achieved by the AOC (LTE)
strategy is ξ2m ¼ 0.47 (0.63) at a detuning of Δ=2π ¼
−59 MHz (þ77 MHz).
In Fig. 5, we plot the achievable ξ2m;min as a function of

NL versus both detuning Δ and OD for the AOC [Fig. 5(a)]
and LTE [Fig. 5(b)] strategies. We find that AOC is globally
optimum, giving more squeezing, and thus better metro-
logical sensitivity, across the entire parameter range. In
Fig. 5(c), we plot the fully optimized spin squeezing, i.e.,
over Δ and NL, achievable by the AOC and LTE meas-
urement strategies as a function of OD. This comparison
again shows an advantage for AOC, including for large OD,
and agrees well with experimental results.
We conclude that (1) for nearly all probe detunings, if

NL is chosen to give projection-noise sensitivity for LTE,
then AOC gives better sensitivity at the same detuning and
NL. The exception is probing very near an absorption
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FIG. 3. Log-log plot of the uncertainty ΔJy of the AOC
measurement versus number of photons NL. Blue diamonds
indicate the measured sensitivity. Nonlinear enhanced scaling of
the sensitivity is observed over more than an order of magnitude
in NL. A fit to the data yields ΔJy ∝ Nk

L with k ¼ −1.46� 0.04.
The best observed sensitivity is ΔJy ¼ 1290� 90 spins with
NL ¼ 2 × 108 photons. For reference, we also plot the data (light
blue circles) and theory (dotted curve) for the measurement of Ĵz
via nonlinear Faraday rotation reported by Napolitano et al. [8].
The solid blue curve represents theory given by Eq. (3) with no
free parameters, plus the independently measured electronic
noise contribution. The dashed green curve shows the theoretical
prediction describing an ideal LTE measurement of Jy without
technical or electronic noise contributions. The nonlinear meas-
urement sensitivity surpasses an ideal LTE measurement with
NL ¼ 3 × 107 photons. Error bars for standard errors would be
smaller than the symbols and are not shown. Inset: Observed
metrologically significant spin squeezing ξ2m as a function of
photon number. The dashed line is a guide to the eye. Error bars
indicate �1σ standard errors.
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of photons NL needed to achieve projection-noise-limited sensi-
tivity ðΔĴyÞ2AOC ¼ ðΔĴyÞ2LTE ¼ NA=4 as a function of detuning Δ.
The gray line indicates ðΔĴyÞ2AOC ¼ ðΔĴyÞ2LTE, so that the AOC
(LTE) strategy is more sensitive in the shaded (white) region.
Magenta curves represent damage ηsc ¼ 0.1 (dot–dashed curve)
and 0.5 (dotted curve) to the atomic state due to spontaneous
emission. (b) Estimated metrologically significant spin squeezing
ξ2m, optimized as a function of NL, versus probe detuning.
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resonance, which induces a large decoherence in the atomic
state. (2) Considering as a figure of merit the achievable
spin squeezing, or equivalently, the magnetometric sensi-
tivity of a Ramsey sequence employing these measure-
ments [11], the global optimum, including choice of
measurement, is AOC at a detuning of −59 MHz, with
NL ¼ 5.4 × 106 photons. In this practical metrological
sense, the nonlinear measurement is unambiguously supe-
rior. Although the AOC and LTE compared here use
coherent states as inputs, the same conclusion is expected
when nonclassical probe states are used: For both mea-
surements, the optical rotation sensitivity ΔSðinÞy;z =Sx can be
enhanced in the same way by squeezing [7] and other
techniques [12].

V. CONCLUSION

We have identified a scenario—nondestructive detection
of atomic spin alignment—in which a nonlinear measure-
ment (AOC) outperforms competing linear strategies with
the same experimental resources. Our experimental dem-
onstration answers a fundamental question in quantum
metrology [37–40], with implications for quantum
enhancement of atomic instruments operating in nonlinear
regimes [1,2,15]. Beyond magnetometry, our techniques
may be useful in the measurement of spinor condensates
[47–49] and lattice gases [19]. To date, such measurements
have been limited to detecting spin orientation (vector
magnetization), whereas our technique provides a nonde-
structive measurement of spin alignment (a component of
the spin-one nematic tensor), with direct application, e.g.,
to the detection of spin-nematic quadrature squeezing in
spinor condensates [10]. The technique may make possible
proposals for the detection [54,55] and preparation [51,52]
of exotic quantum phases of ultracold atoms, which require
quantum-noise-limited measurement sensitivity.
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APPENDIX A: ATOM-LIGHT INTERACTION

As described in Refs. [57,60], the light pulses and atoms
interact by the effective Hamiltonian

Ĥeff ¼ κ1Ĵz ~SzðtÞ þ κ2½Ĵx ~SxðtÞ þ Ĵy ~SyðtÞ�; ðA1Þ

plus higher-order terms describing fast electronic non-
linearities [26]. Here, κ1;2 are coupling constants that
depend on the beam geometry, excited-state linewidth,
laser detuning, and the hyperfine structure of the atom, and
the light is described by the time-resolved Stokes operator
~SðtÞ, defined as ~Si ≡ 1

2
ðEðþÞ

þ ; EðþÞ− ÞσiðEðþÞ
þ ; EðþÞ− ÞT , where

the σi are the Pauli matrices and EðþÞ
� ðtÞ are the positive-

frequency parts of quantized fields for the circular plus or
minus polarizations. The pulse-averaged Stokes operators
are Ŝi ≡

R
dt ~SiðtÞ so that Ŝi ¼ 1

2
ða†þ; a†−Þσiðaþ; a−ÞT ,

where a� are operators for the temporal mode of the pulse
[11]. In all scenarios of interest hĴxi ≈ NA=2 ≫ hĴyi, hĴzi,
and we use input Ŝx-polarized light pulses Sx ¼ hŜðinÞx i ¼
NL=2 and detect the output ŜðoutÞy component of the optical
polarization.

FIG. 5. Theoretical calculation of spin squeezing as a function of optical depth and probe detuning for (a) the AOC strategy and (b) the
LTE strategy with our experimental parameters. Contours indicate the minimum achievable metrologically significant squeezing ξ2m;min
with respect to NL, with values indicated, as a function of detuning Δ and OD. (c) The blue diamonds represent the observed spin
squeezing ξm as a function of optical depth for the AOC measurement with NL ¼ 2 × 108 photons. The solid curves show the
theoretically predicted minimum achievable squeezing, optimized with respect to both NL and Δ, for the AOC measurement (solid blue
line) and the LTE measurement (solid green line). The scaling of each curve is roughly ξ2 ∝ OD−1=2, so the advantage for AOC
continues also to large OD.
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The atomic spin ensemble is characterized by the

operators Ĵz ≡PNA
i f̂ðiÞz =2, describing the collective spin

orientation, and Ĵx;y ≡PNA
i ĵðiÞx;y, describing the collective

spin alignment, where ĵx ≡ ðf̂2x − f̂2yÞ=2 and ĵy ≡ ðf̂xf̂y þ
f̂yf̂xÞ=2 describe single-atom Raman coherences, i.e.,
coherences between states with Δmf ¼ 2. Here, fðiÞ is
the total spin of the ith atom. For f ¼ 1, these operators
obey commutation relations ½Ĵx; Ĵy� ¼ iĴz and cyclic
permutations.
Using Eq. (A1) in the Heisenberg equations of motion

and integrating over the duration of a single light pulse
[11], we find the detected outputs to second order in Ŝx

ŜðoutÞz ¼ ŜðinÞz þ κ2ŜyĴ
ðinÞ
x − κ2ŜxĴ

ðinÞ
y ; ðA2Þ

ŜðoutÞy ¼ ŜðinÞy þ κ1ŜxĴ
ðinÞ
z þ κ1κ2

2
Ŝ2xĴ

ðinÞ
y

¼ ŜðinÞy þ κ1Ŝx
cos θ

K̂ðinÞ
θ ; ðA3Þ

plus small terms. Equation (A3) describes a nondestructive
measurement of the mixed alignment-orientation variable

K̂ðinÞ
θ ≡ ĴðinÞz cos θ þ ĴðinÞy sin θ, where tan θ≡ κ2Sx=2. K̂θ is

the variable that should be squeezed to enhance the
sensitivity of the AOC measurement.

APPENDIX B: MEASUREMENT SIGNAL

We send a train of optical pulses with alternating h- and
v-polarization through the atom cloud and record the output

Stokes components Ŝðout;iÞy , i ¼ 1; 2;… and their corre-

sponding inputs Ŝðin;iÞx . The alternating polarization pre-
vents the rotation angle θAOC from accumulating, and thus

keeps ŜðoutÞy within the detector’s linear range. We designate
the first pulse as the AOC measurement, and use the second
and third pulses to construct a baseline quantum non-
demolition measurement. We estimate the signal hĴyi from
a differential measurement δŜy ≡ Ŝðout;1Þy − Ŝðout;bÞy , where

Ŝðout;bÞy ≡ ðŜðout;2Þy þ Ŝðout;3Þy Þ=2 is the baseline measurement
signal. The AOC measurement signal is then

hĴyi ¼ 2hδŜyi=ðκ1κ2hŜð1Þx i2Þ. The composite pulse Ŝðout;bÞy

constitutes a quantum nondemolition measurement of K̂θ

[42], and we have previously used such composite pulses to
demonstrate spin squeezing of the K̂θ variable [11].

APPENDIX C: MEASUREMENT SENSITIVITY

Both AOC and LTE measurements have the same

input state, with Sx ≡ hŜðinÞx i ¼ NL=2, Jx ¼ hĴxi ¼ NA=2,

hĴzi ¼ 0, ðΔŜðinÞy Þ2¼NL=4, ðΔĴðinÞz Þ2 ¼ ðΔĴðinÞy Þ2 ¼ NA=4,
and uncorrelated Ŝx, Ŝy, Ŝz, Ĵz, and Ĵy.

The LTE measurement detects Ŝz, with signal hŜðoutÞz i ¼
−κ2hŜxihĴyi and variance ðΔŜðoutÞz Þ2 ¼ ðΔŜðinÞz Þ2þ
κ22hĴxi2ðŜðinÞy Þ2 þ κ22hŜxi2ðΔĴðinÞy Þ2. To infer the Ĵy measure-

ment uncertainty, we note that Ĵy and ŜðoutÞz are Gaussian
variables [61], so that the simple error-propagation formula
coincides with more sophisticated estimation methods
using, e.g., Fisher information [62]. We find

ðΔhĴyiÞ2 ¼
ðΔŜðoutÞz Þ2

j∂hŜðoutÞz i=∂hĴyij2
ðC1Þ

¼ 1

κ22NL
þ N2

A

4NL
þ NA

4
; ðC2Þ

which shows shot-noise scaling. The first two terms are
readout noise and determine the measurement sensitivity. In
the experiment, ðκ2NAÞ2=4 ∼ 10−3, so the second term is
negligible. The last term is due to the variance of Ĵy—i.e.,
the signal we are trying to estimate—which we subtract to
give the expression in Eq. (2). We note that other meas-
urement strategies using the same term in the Hamiltonian
are possible, e.g., probing with Ŝz-polarized light and
reading out the rotation of Ŝz into Ŝy, but lead to the same
measurement sensitivity.

The AOC measurement detects Ŝy, with signal hŜðoutÞy i ¼
ðκ1κ2hŜxi2=2ÞhĴyi and variance ðΔŜðoutÞy Þ2 ¼ ðΔŜðinÞy Þ2þ
ðκ21hŜxi2ÞðΔĴðinÞz Þ2 þ ðκ21κ22hŜxi4=4ÞðΔĴðinÞy Þ2. From this
slope and output variance we find the variance referred
to the input

ðΔhĴyiÞ2 ¼
ðΔŜðoutÞy Þ2

j∂hŜðoutÞy i=∂hĴyij2
ðC3Þ

¼ 16

κ21κ
2
2N

3
L
þ 4NA

κ22N
2
L
þ NA

4
; ðC4Þ

where again the last term is the signal variance, which we
subtract to give the expression in Eq. (3).
In contrast, previous work [8] used short, intense pulses

to access a nonlinear term in the effective Hamiltonian
κNLS0ŜzĴz. The coupling κNL is proportional to the Kerr
nonlinear polarizability, and S0 ≡ NL=2 (so that S0 ¼ Ŝx
for the input polarization used). Calculating the variance

referred to the input as above, we find sensitivity ΔJz ¼
ΔŜðinÞz =ðκNLS2xÞ and ΔĴz ∝ N−3=2

L scaling.

APPENDIX D: ELECTRONIC AND
TECHNICAL NOISE

The measured electronic noise of the detector referred to
the interferometer input is EN ¼ 9.2 × 105 photons, and
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contributes a term EN × 64=ðκ21κ22N4
LÞ to Eq. (3), which is

included in the blue curve plotted in Fig. 3. Technical noise
contributions from both the atomic and light variables are
negligible in this experiment. Baseline subtraction is used
to remove low-frequency noise.

APPENDIX E: CONDITIONAL NOISE
REDUCTION AND SPIN SQUEEZING

Measurement-induced noise reduction is quantified
by the conditional variance varðK̂θjΦ1Þ ¼ varðΦ2 − χΦ1Þ−
varðΦROÞ, Φ̂≡ðcosθ=κ1SxÞŜðoutÞy ¼ðcosθ=κ1SxÞŜðinÞy þK̂θ,

and χ ≡ covðΦ1;Φ2Þ=varðΦ1Þ > 0. Here, Φ1 ≡
ðcos θ=κ1Sð1Þx Þ × Ŝðout;1Þy and Φb ≡ ðcosθ=κ1ðSð2Þx þ Sð3Þx ÞÞ×
ðŜðout;2Þy þ Ŝðout;3Þy Þ. Spin squeezing is quantified by the
Wineland criterion [59], which accounts for both the noise
and the coherence of the postmeasurement state: If

ξ2m ≡ 2ðΔK̂θÞ2Jx=ðJðoutÞx Þ2, where JðoutÞx ¼ ð1 − ηscÞð1 −
ηdepÞJx is the mean alignment of the state after the
measurement, then ξ2m < 1 indicates a metrological advan-
tage. For this experiment, the independently measured
depolarization due to probe scattering and field inhomo-
geneities give ηsc ¼ 0.093 and ηdep ¼ 0.034, respectively
[11]. The subtracted noise contribution with NL ¼ 2 ×
108 photons is varðΦROÞ ¼ 1.3 × 105 spins2.

APPENDIX F: DEPENDENCE ON DETUNING
AND OPTICAL DEPTH

The detuning dependence of the coupling constants κ1
and κ2 of Eq. (1) is given by

κ1 ¼
σ0
A

Γ
16

½−4δ0ðΔÞ − 5δ1ðΔÞ þ 5δ2ðΔÞ�; ðF1Þ

κ2 ¼
σ0
A

Γ
16

½4δ0ðΔÞ − 5δ1ðΔÞ þ δ2ðΔÞ�; ðF2Þ

where δiðΔÞ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ ðΔ − ΔiÞ2

p
, Δi is the detuning

from resonance with the F ¼ 1 → F0 ¼ i transition on the
87Rb D2 line, Γ=2π ¼ 6.1 MHz is the natural linewidth of
the transition, Δ is measured from the F ¼ 1 → F0 ¼ 0
transition, σ0 ≡ λ2=π, and A ¼ 4.1 × 10−9 m2 is the effec-
tive atom-light interaction area. Note that for large detun-
ing, i.e., Δ ≫ Γ, κ1 ∝ 1=Δ and κ2 ∝ 1=Δ2.
At any detuning, the measurement sensitivity can be

improved by increasing the number of photons NL used in
the measurement. Note, however, that increasing NL also
increases the damage ηsc ¼ kðΔÞηγðΔÞNL done to the
atomic state we are trying to measure due to probe
scattering, where ηγðΔÞ is the probability of scattering a
single photon:

ηγ ¼
σ0
A
Γ2

64
½4δ0ðΔÞ2 þ 5δ1ðΔÞ2 þ 7δ2ðΔÞ2�; ðF3Þ

which also scales as ηγ ∝ 1=Δ2 for large detuning. kðΔÞ is a
correction factor that accounts for the fact that a fraction of
the scattering events leaves the state unchanged. A good
metric to compare measurement strategies is the number
of photons NL required to achieve a given sensitivity.
Minimizing this metric will minimize damage to the atomic
state independently of the correction factor kðΔÞ. For our
calculations, we set kðΔÞ ¼ 0.4, which predicts our mea-
surements at large detuning.
An estimate for the quantum-noise reduction that can be

achieved in a single-pass measurement, valid for ηsc ≪ 1, is
given by

ξ2 ¼ 1

1þ ζ
þ 2ηsc; ðF4Þ

where ζ is the signal-to-noise ratio of the measurement,
i.e., the ratio of atomic quantum noise to light shot noise in
the measured variance ðΔŜðoutÞy Þ2. For the two strategies
considered here,

ζAOC ¼ κ21NLNA

4

�
1þ κ22N

2
L

16

�
ðF5Þ

and

ζLTE ¼ κ21NLNA

4
: ðF6Þ

Metrologically significant squeezing is then given by

ξ2m ¼ ξ2=ð1 − ηscÞ2: ðF7Þ
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