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Abstract

In this thesis I report on building an atom chip designed to operate as a matter wave inter-
ferometer. I show that we are able to coherently split a single Bose Einstein condensate
(BEC) in two using a radio-frequency field to deform a magnetic trap smoothly from a
single to a double well. We can then read this out from the interference pattern that is

produced when they are released from the trap and allowed to overlap.
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Chapter

Introduction

In this thesis I report on building an atom chip designed to operate as a matter wave inter-
ferometer. I show that we are able to coherently split a single Bose Einstein condensate
(BEC) in two using a radio-frequency field to deform a magnetic trap smoothly from a
single to a double well. We can then read this out from the interference pattern that is
produced when they are released from the trap and allowed to overlap.

The double well BEC system has been the subject of enormous interest both from
a theoretical and from an experimental standpoint. One of the earliest experiments at-
tempted with a Bose Einstein condensate, soon after the phase transition itself was first
experimentally realised, was to split the BEC in two in order to study the coherence of
the system [1]. Interference between the two modes of the split condensate was observed
in this experiment, but the splitting process itself was not coherent in the sense that it
introduced a random relative phase between the two modes of the condensate. To date
only a few groups worldwide have reported being able to split a single BEC coherently
using a double well potential. The groups that have done so have either employed optical
potentials [2] [3] [4] or RF dressed state potentials on an atom chip [5] [6]. The first such
experiment was successfully performed only a few years ago.

We follow the approach pioneered by Schumm et al. [5] in which atoms trapped near
the surface of an atom chip are dressed by RF fields produced by current conducting wires
patterned on the surface of the atom chip. The close proximity of the atoms to the chip
allows strong RF fields to be applied easily and with accurate control of the polarisation.
By carefully controlling the amplitude, frequency and polarisation of the RF field, we
gain precise control over the parameters of the trap and can deform it with great accuracy
from a single to a double well.

Coherent splitting of a BEC using a double well potential is in many respects the
equivalent of an optical beam splitter for a laser, and forms the basic building block of our

matter wave interferometer. Using the double well potential, it is possible to implement



Introduction 1.1 Our Experiment

various different interferometric schemes using a BEC, such as Michelson and Sagnac
type interferometers. The advantage of using a BEC over a laser is that the BEC is many
orders of magnitude more sensitive to the small forces (such as gravity or a rotational
acceleration) that we might be interested in measuring. Of course this sensitivity makes
it much more difficult to implement a BEC interferometer. It is possible to use other
methods to make a beam splitter for a BEC (e.g. via Bragg scattering from a resonant
standing wave laser), but these are generally implemented in free fall, after the BEC has
been released from its trapping potential. We would ultimately like to carry out the entire
interferometry process with a trapped BEC, which would allow us to take advantage of a
much longer interrogation time to increase the sensitivity of the interferometer.

There has been significant progress towards making a working trapped matter wave
interferometer based on a double well scheme over the past few years. It has become pos-
sible to read out a small relative phase shift introduced to the system via measurements
of the interference pattern seen in free fall [2] [6] and via a phase sensitive in-trap recom-
bination scheme [7]. Studies of the statistics of interference patterns have also led to a
form of noise thermometry for the double well system [8]. The underlying Josephson dy-
namics of a coupled double well system have also been observed [9], including non-linear
self-trapping [3], and both the AC and DC Josephson effects [4]. Number squeezing due
to atom-atom interactions in the splitting process has also been observed [6] [10]. This
raises the possibility of greatly increasing the length of time during which the double well
system remains phase coherent and perhaps engineering a system with sub-shot-noise lim-
ited sensitivity by exploiting entanglement between the two modes of the system. Atom
chip based interferometers have also been able to study the coherence dynamics of very
elongated BEC systems. At low temperature, these systems can cross over into a regime
where the behaviour of the system is one-dimensional. This fundamentally changes the
physics of the condensate, which can be seen in the the noise statistics (quantum and ther-
mal) of the system [11], and in the relaxation dynamics of phase fluctuations that emerge
along the length of the condensate [12]. The outlook for future progress thus looks very

promising.

1.1 Our Experiment

A brief word of introduction to our experiment is worthwhile. Ours is an atom chip
BEC experiment. An atom chip is a micro-fabricated device used to trap and manipulate
ultracold atoms. The atoms are held trapped in free space close to the surface of the atom
chip. In our case, the fields required to trap the atoms are produced by running DC and
AC currents through gold wires that are patterned onto the surface of the chip. Other

10



Introduction 1.1 Our Experiment

atom chips have used permanent magnetic structures or static electric fields to trap the
atoms [13]. Optical fibres, waveguides and cavities can be incorporated onto the atom
chip to provide light for detecting and interacting with the atoms [14]. Ultimately laser
diodes, detection devices such as charge-coupled device (CCD) arrays, optical elements,

and everything required to run a BEC may one day be integrated into the same device.

EndWie B 200um

A

Yy z
.

Figure 1.1: Atom Chip Layout: Diagram of the layout of wires patterned on the
surface of our atom chip. There are four parallel wires in the centre of the chip
that are used to produce the necessary DC and RF magnetic fields for trapping and
manipulating Bose Einstein condensates. The outer pair are 100 um wide and have
a centre to centre separation of 300um. The inner pair are 50 um wide, and are
separated by 85 um. The ends of these wires are bent into a Z-shape to provide the
field curvature along the length of the wires needed to close the trap along this axis.
The diagram is to scale except that the length is considerably shortened. In the real
atom chip the centre section of the wires is 7mm long. In addition to these trapping
wires, two end wires are patterned onto the chip. These run perpendicular to the
central trapping wires, and are there both to provide additional axial fields and to
be able to run current in a net U-shape, which is used to make the quadrupole field
for a magneto-optical trap that is aligned with the trapping fields of the chip wires.
The principal axes of the trapping geometry are indicated, and the important external
uniform bias fields necessary to produce the magnetic trap are illustrated. The chip
is designed to carry DC and RF currents as indicated in the diagram, and the double
well produced by the RF adiabatic potential is oriented so that the BEC splits along
the x—axis of the trap, perpendicular to the surface of the chip as indicated by the
two parallel clouds represented in the centre of the diagram.

11



Introduction 1.1 Our Experiment

The atom chip we use is illustrated in figure 1.1. There are four parallel wires in the
centre of the chip that are used to produce the necessary DC and AC magnetic fields for
trapping and manipulating Bose Einstein condensates. The outer pair are 100 um wide
and have a centre to centre separation of 300 pm. The inner pair are 50 pm wide, and
are separated by 85 um. The ends of these wires are bent into a Z-shape to provide the
field curvature along the length of the wires needed to close the trap along this axis. The
diagram is to scale except that the length is considerably shortened. In the real atom chip
the centre section of the wires is 7mm long. In addition to these trapping wires, two end
wires are patterned onto the chip. These run perpendicular to the central trapping wires,
and are there both to provide additional axial fields and to be able to run current in a net
U-shape, which is used to make the quadrupole field for a magneto-optical trap that is
aligned with the trapping fields of the chip wires. The principal axes of the trapping ge-
ometry are indicated, and the important external uniform bias fields necessary to produce
the magnetic trap are illustrated. The chip is designed to carry DC and RF currents as
indicated in the diagram, and the double well produced by the RF adiabatic potential is
oriented so that the BEC splits along the x—axis of the trap, perpendicular to the surface
of the chip as indicated by the two parallel clouds represented in the centre of the diagram.

In order to run the experiment, we also need an auxiliary source of ultracold atoms.
In our experiment this comes from a dual magneto-optical trap (MOT) system consisting
of a source MOT in a standard 6-beam configuration, which sends a beam of cold atoms
towards a 4-beam surface or mirror MOT that exploits the reflective gold surface of our
atom chip to trap atoms close to the chip wires, where they can be readily transferred to
a magnetic trap. We refer to the source MOT as the LVIS, since it forms a Low-Velocity-
Intense-Source of cold atoms for the mirror-MOT. The mirror-MOT uses a quadrupole
field generated by a set of anti-Helmholtz coils that are placed at a 45° angle to the atom
chip with the centre aligned a short distance from the chip surface. We also use a third
MOT in the process of transferring atoms from the mirror-MOT to a chip-wire static
magnetic trap. This is referred to as a UMOT, since the quadrupole field in this stage is
provided by DC currents running through the chip wires. These currents are arranged so
that the net DC current runs in a U-shape (effectively entering along one arm and running
through the central section of a Z-wire, then exiting via one of the end wires illustrated in
figure 1.1) which, with the addition of an external uniform bias field, creates a quadrupole
field that is automatically aligned with the chip wires. These stages of the experiment are

described in detail in chapter 4.

12



Introduction 1.2 Thesis Organisation

1.2 Thesis Organisation

This thesis is organised as follows: in chapter 2 I present a brief overview of the theory of
trapping and manipulating ultracold atoms using static magnetic fields, and in particular
some of the real-world effects of trapping atoms near the current carrying wires of an atom
chip. I also introduce some of the theory of Bose-Einstein condensation, paying particular
attention to topics relevant to describing the elongated condensates that we make in our
experiments. This introduction provides the necessary background for understanding how
we produce and characterise Bose Einstein condensates in our set-up. The experimental
apparatus itself is described in chapter 3. Then in chapter 4 I describe how we make
BECs using this apparatus, giving a brief description of each important step in a typical
experimental sequence. I also pay careful attention to characterising the condensates that
we make. These three chapters together make up the first half of the thesis, and provide
the starting point for our interference experiments.

In chapter 5 I describe the RF dressed state potentials (also called RF adiabatic po-
tentials) that we use to change smoothly from a single to a double well potential to split
the BEC in two coherently. The theory of neutral atoms interacting with intense RF fields
has a long history, but the idea of using RF adiabatic potentials to trap and manipulate
atoms is relatively new. In this chapter I draw on some earlier literature to describe an-
alytic approximations of the dressed state potentials beyond the standard rotating wave
approximation, and discuss the full numerical calculation of realistic potentials, paying
attention to the role of the different polarisation components of the RF field and to the
effects introduced by using non-uniform RF fields to dress the atoms. Chapter 6 is an
overview of the theory of matter wave interference in a double well system. It provides
the necessary background for understanding our interference experiments. In chapter 7 [
then present the data from our first interference experiments, and show that we are able
to coherently split a single BEC in two using the RF adiabatic potential. This is the key
result of this thesis. I also briefly discuss some more qualitative observations made in our

early experiments.
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Chapter 2

Some Background Theory

2.1 Introduction

This chapter provides some basic background theory necessary for the following experi-
mental chapters that describe how we make and characterise Bose Einstein condensates
with our apparatus. It is organised as follows: In section 2.2 I give a brief overview of
the principles behind trapping neutral atoms in static magnetic fields, and discuss in par-
ticular how we can make a loffe-Pritchard trap using an atom chip Z-wire. I also discuss
how we calculate the magnetic field from a realistic wire of finite width and length, and
the effect of imperfections in the wire on the fields it can generate. Then in section 2.3 |
give a brief overview of the theory of Bose-Einstein condensation required to understand
the characteristics of the condensates that we use in our interference experiments. Finally
in section 2.4 I summarise how we extract data from absorption images of cold atomic

clouds.

2.2 Magnetic Trapping of Neutral Atoms

A Note on Units

At the typical energy scale of cold atom experiments SI units are not a natural choice. I
will typically express magnetic fields in terms of gauss and energy in terms of either the
angular frequency or tK. We can easily convert between energy units using the Plank
constant, 1 = 6.6262 x 10~34Js, and the Boltzmann constant, kg = 1.3807 x 10~ 23J /K,
where E = kT = hw = ugB in temperature, frequency and magnetic field units respec-
tively. The natural length scale for both BECs and the wires patterned onto the atom chip

is um. DC and AC electric currents are best expressed in mA.

14



Some Background Theory 2.2 Magnetic Trapping of Neutral Atoms

Rubidium-87

We trap 3'Rb in the 5°S, /2 electronic ground state of the atoms. Laser cooling operates
on the D, line which couples 5%S, /2 to 5°P; /2- This line has a cycling transition, needed
to scatter enough photons to effectively cool an ensemble of atoms to uK temperatures.
The wavelength of the transition is ~ 780nm with a natural linewidth I' ~ 27 x 6 MHz
and a Doppler temperature 7Tp = 146 uK.

The 528, /2 ground state is further split into two levels due to the hyperfine coupling
of the total angular momentum of the electron J with the total nuclear angular momentum
I. The total angular momentum of the atom is F = J +1, so the 525, /2 state is split into
|F = 1) and |F = 2) levels. Each state has a set of degenerate my sublevels. In 8’Rb the
hyperfine splitting of the ground state is 6.8 GHz [15]. We work with atoms optically
pumped into the stretched state |F =2,mp = 2).

Some Orders of Magnitude

For 8’Rb atoms in the |F = 2,mp = 2), a trap depth of 1 G corresponds to a temperature
of 67 uK, which is why some form of pre-cooling is required before we can magnetically
trap an ensemble. Since the Doppler temperature of the laser cooling D; transition is
146 uK, we can readily trap a laser cooled ensemble with a magnetic trap with a depth of
10-15 gauss.

The typical transition temperature for a BEC is of the order of ~ 0.5 uK. The appro-
priate energy scale for both the BEC chemical potential and the magnetic trap parameters,
such as trap frequencies and barrier height, is in terms of kHz.

The Zeeman shift of the |F = 2,mp = 2) state is .4MHzG~!. The energy shift due
to gravity (a typical small force that we want to measure with the interferometer) is ~
2.1kHzum™!. The magnetic field gradient at a distance of 100 um from a wire carrying
a 1A current is 0.2G pum ™', which corresponds to 0.28 kHz pum~! for a 8’Rb atom in the
|F =2,mp =2) state.

Zeeman Interaction

In a static magnetic field the degeneracy of the hyperfine states is lifted. If the energy
shift is small compared to the hyperfine splitting then F is a good quantum number and

the interaction Hamiltonian is

Hrr = upgrF-B(r), (2.1

where g is the Bohr magneton and gr the hyperfine Landé g-factor. The magnetic field

15



Some Background Theory 2.2 Magnetic Trapping of Neutral Atoms

lifts the dengeneracy of the Zeeman sublevels —F < mp < F, which are classically in-
terpreted as the projection of the angular momentum onto the local magnetic field. If
the energy shift is small then mr remains a good quantum number. To lowest order the

Zeeman sublevels shift linearly according to

AEpm; = grpmrB (2.2)

where Upmpgr is the magnetic moment of the atoms (anti-)aligned with the field, B =
|B(r)|. For simplicity we will always follow the convention that the static magnetic field
is aligned along Z, which is the (local) quantisation axis for the atomic magnetic moment.
It is this linear Zeeman shift that is exploited to magnetically trap neutral atoms. Equa-
tion (2.2) is simply a potential energy term in the Hamiltonian of the atom moving in a
static magnetic field

p

H=—+V. (2.3)
2m

where V = ugpmpgrB. We assume the atomic quantisation axis adiabatically follows the
orientation of the local magnetic field. We work with atoms optically pumped into the
|F =2,mp = 2) stretched state.

Adiabaticity

The adiabatic approximation of equation (2.3) holds as long as the atomic spin can follow

the direction of the magnetic field vector. Classically this means that

— 2.4
7 < oy, (2.4)

where 6 is the angle between the spin and the local field vector, and @, = grugB/h
the Larmor precession frequency of the atom in the magnetic field. In regions where B
vanishes, this condition can no longer be satisfied and atoms can undergo Majorana spin
flip transitions, leading to the loss of atoms from a trap. In practice even a small residual
field is enough to avoid Majorana losses on the time scale of the experiments that we

perform.!

2.2.1 Trapping Configurations

The potential energy term of equation (2.3) is proportional to the absolute value of the
static magnetic field. The sign of the mrgr prefactor determines the alignment of the

IThe loss rate scales as exp(— %) where @ is the geometric mean trapping frequency. Typical numbers
for our traps are @y = 0.7MHz and @ = 480Hz, so the exponential terms is negligibly small.

16



Some Background Theory 2.2 Magnetic Trapping of Neutral Atoms

atomic spin with the local magnetic field vector. Aligned states with mpgr < O are at-
tracted to regions of high field (high field seekers), while anti-aligned states with mpgr >
0 are attracted to regions of low field (low field seekers). Since Maxwell’s equations
do not allow for local maxima in free space, high field seekers cannot be trapped using
static magnetic fields. In the 5%S, /2 electronic ground state the trappable low field seek-
ing states are |F = 1,mp = —1) and |F =2,mp = 1,2). These states are not the absolute
ground state of the atom, so trapped atoms are in meta-stable states that can decay via in-
elastic 2- or 3- body spin-flip collisions. However for s-wave collisions, inelastic 2-body
processes are strongly suppressed in the stretched states because of angular momentum
conservation.

The lowest-order multipole trapping configuration, and the one offering the strongest
confinement, is a quadrupole field, which creates a linear trapping potential. However a
quadrupole necessarily has a zero magnetic field at which point the magnetic moment of
the atom cannot adiabatically follow the change in field direction. The lowest order stable

trap is thus a 3D harmonic potential

3
V(r):%m Y oo (2.5)

I=X,,2

Ioffe-Pritchard Trap

A simple magnetic field configuration that is 3D harmonic near the origin is the Ioffe-

Pritchard trap, first used in plasma confinement and then adapted to magnetic trapping of

cold atoms . The loffe-Pritchard configuration combines a linear (2D) magnetic quadrupole
with a longitudinal homogeneous field to give a non-zero minimum field. Longitudinal

confinement comes from an additional curvature superimposed on the longitudinal field.

The full Ioffe-Pritchard field is

0 X —XZ
Bip(r) =By |0 |+B | —y |+ %B” —yz (2.6)
1 0 22— %(x2 —|—y2)
_ d|B| _ 9|B| 9%|B|

where B' = 5= = =, and B = .2 - The loffe-Pritchard trap is locally harmonic with

trapping frequencies

B2
o, = /8B D and o, = [ SEREM g, 2.7)
m By m

The harmonic approximation is very good in the longitudinal direction. In the transverse

direction the potential is linear once \/x% +y% > B/ B'. Since we have an axially symmet-
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ric trapping geometry with @, > @, we can usefully rewrite equation (2.5) in cylindrical

coordinates centred on the trap minimum as

1
V(r)= Em(aﬁp2 +w?7?). (2.8)

where p = /x2 +y2.

2.2.2 Wire Trap

Figure 2.1: Z-Wire Trap: This figure illustrates the basic idea of how a loffe-
Pritchard trap can be made with a single wire bent in a Z-configuration. The wire
carries a DC current 1. The field induced by this current is cancelled along the length
of the central section of the wire at a height d by a uniform external bias field X bias,
forming a quadrupole guide along the wire. This guide is closed off along the axis
by the fields from the ends of the wire, sketched in red in the figure. The curvature
from these fields provides axial confinement, and they add to give a non-zero field at
the height of the trap minimum. This field is augmented by another uniform external
bias field By which adjusts the magnitude of the field at the trap bottom.

The loffe-Pritchard configuration can be readily implemented on an atom chip using
a single wire running a DC current / and an external uniform bias field perpendicular to
the wire. Figure 2.1 is a schematic diagram illustrating such a trap. In our geometry the
current / runs along X and Z, and the bias field along X (Xbias). The bias field will cancel
the wire field along a line at a distance d above the wire, forming a 2D quadrupole with

gradient B’ giving tight confinement in the radial direction. These parameters are given
by

Ho / Ho I
=% d B=H"
2m By T M2

Axial confinement is provided by provided the current along X. Since both ends of the

2.9

wire run current in the same direction, they produce a non-zero minimum of B, at the
centre of the trap. We typically add an additional uniform field By along the 7 to increase

this minimum to field to about 1G.

18



Some Background Theory 2.2 Magnetic Trapping of Neutral Atoms

If the central section of the wire is sufficiently long, the field from the ends of the

/ _ ol
ends — 2xl2?

where L is the half-length of the central section of the wire. The effect of the quadrupole

Z-wire can be approximated as a quadrupole in the y-Z plane with a gradient B

is to shift the trap minimum towards the wire and to rotate the longitudinal axis of the trap

in the £-Z plane. The trap minimum d and rotation angle ¢ are given by

y B, (By+B. ,d d?
d=d— e”d;sz i;,ze”ds ) and tan(¢) = 2 (2.10)
ends

Typically d < L and B, , < B’ so these corrections are very small. With respect to the

ends

rotated axes, the curvature of the trap in the radial and longitudinal directions is given (to
first order) by

’B (21 \*B, 92B I\ d
> (Z2) Bhis gng Z2 _ag (M) £ (2.11)
d P Uol By 072 T ) LA
Note that B’ and By, are fixed by the choice of d - see equation (2.9). The trap aspect
ratio is
(018 Bbias L2
— = —. 2.12
@, 6B d? ( )

Typical numbers corresponding to our experimental parameters (I =2A,d = 150um, L =
7mm and By = 1G) are | =27 x2.2kHz and @, = 27 x 3Hz. The radial trap frequency
we measure in the lab is consistent with these numbers, corrected for the finite width of
the trapping wires (see section 2.2.2 below). However the axial trapping frequency is
considerably higher, which is a result of anomalous field components introduced by small

deviations in the current flowing through inhomogeneous wires (see section 2.2.2 below).

Finite Size Effects

The above calculations were carried out to first order for infinitesimally thin ideal wires
and do not take into account the effect of the finite size of realistic wires on the magnetic
fields. We expect finite size effects to become important when the distance d separating
the trap minimum and the wire becomes comparable to the wire dimensions. The relevant
wire dimensions are illustrated in figure 2.2. Our chip wires have a thickness 7 = 3 um
and widths w = 50 and 100 um. We typically work at distances d = 150 — 200 um to the
chip surface, so the effect of the finite wire thickness is negligible but we do need to take
into account the finite width of the wire to accurately calculate trapping potentials.

The magnetic field of an infinitely long wire of finite width w and zero thickness

carrying current / can be calculated analytically [16] [17]. It is
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Z

Figure 2.2: Finite Wire: This diagram illustrates the effect of the finite wire dimen-
sions on the trapping field of a realistic wire. Atoms are trapped at a distance d above
the wire, which has a height h and width w. In our experiment h << d and we can
ignore the effect of the finite thickness on the field at the position of the atoms. How-
everd ~ 1 —3w (depending upon the trap used) and we must take the finite width into
consideration. The field produced by an infinitely long finite width wire can be cal-
culated as illustrated in figure 2.2(b). The length of the central section of our wires
is much longer than the length of our condensate, so we can safely approximate the
fields from the central section of the trapping wires in this way.

Bxo) =40 (1n1)5-+ 61 - 0% @.13)

2T w r

At our distance of closest approach d ~ 1.3w, the difference in the field amplitude is less
than 5%, and the difference in field gradient about 10%. The radial trap frequency is
proportional to the field gradient (see equation (2.7)), so the finite wire width contributes
roughly a 10% correction to the important trap parameters dependent on trap frequency,
such as the barrier height and well separation in the double well potential.

We also calculate full numerical trap potentials for our wire geometry taking into
account the finite wire thickness and lengths using the Radia plug-in for Mathematica.!

In general their additional corrections to the trap parameters are negligible.

Edge Roughness

One of the early observations from atom chip experiments was that cold atomic ensem-
bles broke up into fragments when brought close to the surface of the trapping wires [18]
[19] [20]. On axis the trapping potential is determined by the field parallel to the wire.
The fragmentation is due to anomalous field components 0B,(z) that raise or lower this
potential minimum, so that the ensemble is trapped in a rough potential landscape. These

field components are caused by transverse components +01;(z) in the current flowing

'A package developed by the European Synchrotron Radiation Facility and vailable online at
http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia
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Figure 2.3: Illustration of a thin wire with fluctuating edges. The width, w, and
height, h, of the wire are indicated. Boundary conditions on the current density re-
quire that the current follows the fluctuations along the edge of the wire, introducing
current components 01, which produce magnetic field components + B, (z) along z
at the position of the atoms at a distance, d, above the wire. On axis, the 7 compo-
nent of the field defines the energy of the trap, so these components lead to a rough
potential. When the magnitude of the roughness is comparable to the temperature of
an ensemble of thermal atoms (or the chemical potential of a BEC), the cloud will
fragment into lumps along the length of the wire. The edge fluctuations in this figure
are much larger than in a typical wire.

through the trapping wire introduced by imperfections in the wire which cause the cur-
rent to deviate [21] [22]. The resulting potential minimum at a point along the wire is
proportional to |By + 6B;(z)|. When the magnitude of the anomalous field is comparable
to the temperature of an ensemble of thermal atoms pupdB;(z) > kgT (or updB.(z) > U,
the chemical potential of a BEC ) the ensemble will break up into fragments.

The origin of these transverse current components has now been well studied. There
are three possible sources of transverse current components: fluctuations in the edge of
the wire, surface roughness, and bulk defects. Edge fluctuations typically dominate at
distances large compared to the width of the wire, particularly for wires, such as ours,
that are thin and wide [23]. Surface roughness and bulk defects are more important close
to the wire, where the anomalous component due to edge fluctuations tends to saturate. As
wire fabrication techniques have improved, allowing atoms to be trapped much closer to

the trapping wire, the effects of surface roughness and bulk inhomogeneity have also been

21



Some Background Theory 2.2 Magnetic Trapping of Neutral Atoms

studied [24] [25]. In our experiments atoms are trapped at a distance large compared to
the height of the wires, d > h. At this distance we expect edge fluctuations to dominate,
so we can ignore the contribution of current components along y and the contribution
from surface and bulk defects.

The effect of edge fluctuation on the current flowing though the wire is illustrated in
figure 2.3. Assuming that the fluctuations in the edges of the wire are small compared
to the width of the wire, fluctuations in the current SI(X’Z) around the average current I
can be readily calculated. We can express the fluctuations in the position and width of the
wire in terms of Fourier components f;" = J [*, dze™ fr(z) % fL(z), where fg)(z) are
the fluctuations in the right (left) edge of the wire. The fluctuations in the current follow
from the boundary condition that no current flow out of the wire, so that the current
locally follows the edges of the wire. The anomalous magnetic field then follows by
direct integration from the Biot-Savart law. Assuming that the width of the condensate is
much smaller than d, the rough potential comes from the z-component of the anomalous
magnetic field 8V = gpupmpdB,(d,0,z) [26] [23] [27].

Under these conditions the power spectrum of the anomalous magnetic field is By =
(grupmr)? Bbl ast Fy, where By is the field at the trap bottom, By, = Hol/27d is the
field produced by an ideal wire running current, /, at a distance, d, from the surface, and
Fy is the power spectrum of the fluctuations in the edge of the wire. The function, Ry 4
translates this power spectrum into noise in the magnetic field seen by the atoms. An

expression for Ry 4 was first calculated in [26]:

» 2sinh[kw/2] Kyi1]kd] kw —kw

de (kd) (fow)sinhfow] & Z de [72n+1[7] —72n+1[T]]

(2.14)

where K, | [kd] is the modified Bessel function and 75, 1 [x] the incomplete Gamma func-
tion. The series only converges for distances d > w/2, and converges rapidly for kw < 1.

There are two important length scales that dictate how the fluctuations in the current
+61,(z) translate into anomalous field components +8B;(z) at the position of the atoms:
the separation d between the trap minimum and the wire surface, and the wavelength
of a given current component. The magnitude of the potential roughness scales with
d*/ for a white noise power spectrum. At distances d > w the term ~ (kd)?K; (kd)
dominates. This term rises proportional to (kd)? at low frequency, decays exponentially
at high frequency and peaks at kd ~ 1.3. The physical reason for the cut-off at high
frequency is that fluctuations with a wavelength shorter than the distance to the wire will
average to zero in the far field. At long wavelengths the angle between the meandering

current and the z-axis becomes negligible (the transverse component I, o< k ), which gives
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the cut-off at low frequency. If we assume that the spectrum of noise in the current is
white, we would thus expect to see a dominant contribution to the anomalous field at a

wavelength a little less than the distance of the cold atom ensemble to the wire.!

2.3 Bose Einstein Condensation

We also need some basic background theory in order to describe the condensates that
we use in our experiments. In the following I give a brief overview of what we need to

describe our experiment. My major source is Pitaevski and Stringari [28].

2.3.1 Noninteracting Bose Gas

We start with a simple description of a non-interacting Bose gas trapped in a harmonic
potential given by equation (2.5), which has a mean trapping frequency @ = Hk(a)k)l/ 3,

In this potential the single particle energy eignenvalues are given by

3
1
e(m) =Y (m+ E)hcok (2.15)
k=1
where n; > 0. The occupation number of a quantum state is

1

ePle—1) 1 2.16)

ni=

where 3 = 1/kpT, & is the energy of the i"" state, and u is the chemical potential, fixed
by the normalisation condition N = Y ;71;. Equation (2.16) requires that u < &, the lowest
eigenvalue of the single particle Hamiltonian. When  — & the occupation number Ny =
1/exp[B (& — ) — 1] of the ground state becomes large. For a large number of particles N,
Bose Einstein condensation is characterised by the macroscopic occupancy of the ground
state @ in the limit u — &.

The ground state of the system is obtained by putting all N particles in the single
particle groundstate with energy & = i(®, + @, + ®.)/2. The single particle groundstate
wave function is

m

¢o(r) = (%)%em[ 2h(wxxz+coyy2+cozz2)] (2.17)

I'The expected spectrum of noise for realistic wires is in fact not white but self-affine fractal roughness.
For wire fabricated like ours, the typical correlation length of this roughness is ~ 20nm with a mean square
roughness of ~ 3nm. When the distance to the wires is large compared to the correlation length, as in our
case, the dominant wavelength is again given by the distance to the wires [27].
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which has widths a; = \/h/may. The overall size of the cloud is given by the harmonic

oscillator length
| h
= ) 2.18
Ao MWy, ( )

In general not all atoms will be in the groundstate, but there will also be a thermal com-

ponent to the ensemble (defined as the number of particles that are not in the ground
state) Ny, = }.; 20 7. The normalisation condition is then set by the total number of atoms,
N = NO + Nth'

Critical Temperature

In the thermodynamic limit the number of particles in the thermal component can be
calculated from equation (2.16) analytically by setting y = & and replacing the sum over

the states by an integral

o 1
N = No+ Ny, :N0+/() p<8>eﬁ(8_—“)—1d8 (2.19)

where p(€) is the single particle density of states. This can be solve analytically, and

gives a critical temperature 7, above which Ny =0

180 nrs (2.20)

which occurs at a phase space density PSD = 2.612, where the phase space density of an

ensemble of particles with a peak number density ng is defined as

PSD = noAj. (2.21)

and Agp is the thermal deBroglie wavelength of a particle with mass m at temparature 7

27h?
Aap = \/ . 2.22
dB mksT (2.22)

The fraction of particles in the condensate has the simple temperature dependence

N T
_0:1_(_
N T

Both of these results, equation (2.20) and equation (2.23), are derived in the thermody-

)3. (2.23)

namic limit N — oo under the condition that the temperature of the ensemble is much

greater than the spacing between the single particle energy eigenvalues, kgT > hwy. For
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a highly anisotropic trap with @, > ®; this condition may no longer be satisfied and the
description of the BEC becomes more complicated [29].

At finite atom number equation (2.20) is no longer valid. The correction is given by

O _ (732 173 (2.24)
Tc Oy

where @ = 1/3(w,+ @, + ;) is the arithmetic mean trapping frequency [30]. The critical
temperature is further modified by interactions. To lowest order the shift is given by [31]
o7, a

— 132N/ (2.25)
Tc Ao

where aj, = \/h/m@ is the harmonic oscillator wavelength. This correction is indepen-

dent of the shape of the trap as long as the gas remains three dimensional.!

Density Distribution

Most of our experimental data is extracted from measurements of the number density
distribution of the ensemble n(r) = ny(r) + ny(r), normalised to the total number of par-
ticles [n(r) = N. The number density distribution of a thermal Bose gas is n,(r) =
[ d®pny(r)/(27h)3, which can be calculated below T, by setting i = 0 in the semi-
classical particle distribution function ny(r) = 1/(exp[B&(r,p) — 1] — 1). The integration

in momentum space gives [28] [35] [36]

1
ma(e) = g2 277V (2.26)

dB

where Z = ePH is the fugacity of the ensemble and g5 /2[2] is a Bose function defined by
grld =X, Z'/IP. When T < T, 7 = 1, corresponding to a saturated thermal component.
Above T, we can treat the fugacity 7 as a fit parameter.

For a thermal cloud in a harmonic trap, the leading term of the Bose distribution is a
gaussian, and is close to the Boltzmann distribution of thermal atoms. However the Bose
distribution has a higher peak and is slightly narrower in comparison to the Boltzmann
distribution due to the bunching effect of indistinguishable bosons. The difference is
negligible in the wings of the distribution where the thermal component is distinguishable
from the BEC. We can therefore use the Boltzmann distribution to describe the thermal

component

'Equation (2.25) describes a mean-field effect. For a discussion of higher order corrections see the
work of Baym et al. [32] [33] [28] [34].
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Nlh 3 x]%
2.27
un(r (2m) (2r)3/2 H Gk { 207 | (2:27)

where the gaussian widths are defined as oy = \/m. The raw images of our data
are column densities integrated over the imaging axis (either the x—axis or the z—axis).
If we integrate equation (2.27) over one spatial dimension, the widths o} are unchanged
but the peak density becomes ng = N;;, /210, 0,. We often also integrate over the y—axis

to get a line density for analysis, in which case the peak density of equation (2.27) is

ny = Ny, /V21o;,.

Free Fall

We almost always image the cloud after releasing it from the trapping potential and al-

lowing it to expand in free fall. The initial RMS velocity of the thermal cloud is

VRMS = \/ kBT/m = O} Wy (228)

In the absence of interactions, the velocity distribution remains unchanged in free fall. If
the trap is turned off suddenly at time r = O it will expand isotropically and the initial

gaussian widths will be scaled according to

o7 (1) = o7 + (kgT /m)t* (2.29)

which can be used to extract the temperature from the gradient of sz (t) versus t2. In
practice, since we cannot be sure that the trap turns off suddenly at t = 7y, we always
calculate the temperature of a cloud using the second expression. This can then be used
to calibrated since shot measurements of clouds at different temperatures released under
the same experimental conditions. Note that the scaling of the o} will also scale the peak

density ng given according to the expressions in the text above.

2.3.2 Interacting Gas at Zero Temperature

The Hamiltonian for interacting bosons in an external potential is

. . n? . A
H= /alr‘PT(r)(—z—V2 + Vo (1)) (1) /drdr P ()P )WV (r—r)¥r)¥(r)
m
(2.30)
where V (r —r’) is the interaction potential and W' (r) and ¥(r) are the usual field creation

and annihilation operators respectively. The field operator ‘i’(r) can be written in terms

26



Some Background Theory 2.3 Bose Einstein Condensation

of the single particle wave functions as

A

W(r) = go(r)ao+ ) @idi (2.31)
i£0

where the 4; are the single particle operators and the ground state term i = O represent-

ing the condensed fraction Ny = (&8&0> has been separated from the remaining terms.

Under the approximation that the eigenvalue Ny is large, we can make the Bogoliubov

approximation and treat @y(r)dy as a classical field, rewriting equation (2.31) as

W(r) = @g(r) + 8¥(r). (2.32)

where we have defined the classical field ®(r) = /No@o and §¥(r) = Yizo@idi. In
dilute Bose gases at low temperature the condensed fraction can be well over 90% and we
can typically ignore the non-condensed component 5‘?(r). In this case the field operator
is equivalent to the classical field ®((r) and the system behaves classically.

We can identify the wave function of the condensate ®g(r) as the order parameter of
the system described in equation (6.2). The time evolution of the wave function is given
by

Dy (r,1) = \/No@y(r)e™/" (2.33)

where 4 = JE/dN is the chemical potential of the condensate.

2.3.3 Gross-Pitaevskii Equation

In the Heisenberg representation the equation for the field operator ¥(r,7) is

ih—¥(r,t) = [¥(r,1),A] = [—@ + Vex (1, 1) —I—/dr"i’*(r',t)V(r’—r)‘i’(r',t)]‘i’(r,t).

ot 2m
(2.34)
where H is defined in equation (2.30). To derive the Gross-Pitaevskii equation (GPE)
we identify W(r) = ®(r) and replace the interatomic potential V (r' —r) with an effec-
tive delta-potential g6(r —r’) where g is a coupling constant determined by the s-wave

scattering length a

Amh3a
m

) (2.35)

Replacing the interatomic potential with an effective delta-function potential is equivalent

to assuming that the condensate wave function ®y(r,7) varies slowly over distances of the
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order of the interatomic force. For ultra-cold atoms the s-wave scattering length a is
typically of the order of a few nm. Under these conditions equation (2.34) reduces to the
GPE

h2V2

d
ifi=- @0 (1) = [ == + Ve (1,1) + g|Po(r,1) "] Po(r 7). (2.36)

The wave function is normalised to the total number of atoms [ |®g|?dr = Ny and the
density distribution is n(r) = |®p|?. The time evolution of the condensate wave function
is given by equation (2.33), where @q(r) are stationary solutions of the GPE. If we further
assume that the external potential V,,; is time-independent then we can derive the time-
independent GPE

h*v?

[, + Veu (r) + &l g0 (r) | o () = g0 r) (2.37)

where p is fixed by the normalisation condition [ @7 (r)dr = 1.

We can write an equivalent and useful description of the condensate wavefunction
in terms of the density and phase of the system: W(r,7) = \/We(i/ MS(r1)  The time
evolution of the wave function is determined by the coupled equations

%n+V~(Vn) =0

2.38)
a 2 hz (
and m—v+V<ﬂ+Vex,+gn— Vz\/ﬁ) =0

dt 2 2my\/n

where in general v = v(r,7) and n = n(r,t).

Thomas Fermi Approximation

Equation (2.37) is the starting point for calculating the ground state of the interacting
condensate in an external trapping potential. In the following we assume ¢p(r) is real so
that we can identify /No@o(r) = 1/n(r), and that the external potential is harmonic, given
by equation (2.5). In general equation (2.37) must be solved numerically, but analytical
solutions are possible in certain limits.

In the limit that the interaction term g|@o(r)|? in equation (2.37) is much larger than

the kinetic energy term —h>V?> /2m, we have

(Vex (1) — 11+ g| @0 (x)[?) @0 (r) = 0. (2.39)

This is called the Thomas-Fermi approximation. Equation (2.39) has the solution
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Urr—V(r) itV (r) <
=4 ® TVOss (2.40)
0 if V(r) > u.

In a harmonic trap equation (2.40) is an inverted parabola

. 15 No 3 Xi 2
n(r) = ngRkMax [(1 —kzl (R_k) ) ,o] (2.41)

where the wave function extends out to a radius R, = /2u/ ma),f so that

(2.42)

ho <15N0a>2/5

‘uTF - 7 aho

In a highly anisotropic cigar-shaped trap the Thomas-Fermi approximation may then
be valid in the longitudinal direction but fail in the transverse direction.

The images that we extract of our condensates are column densities integrated over
the imaging axis. For anaylsis we typically also integrate over the y—axis to return a line
density n(z). The shape of the inverted parabola changes for the corresponding column

and line number densities to

3/2
ilY0'<1_<Y_22+i)> ify<Ryandz <R,

n(y,z) = (2.43)

2
0 otherwise

2\ 2
15N (1—<,§) ) ifz <R,
and n(z) = : : (2.44)

0 otherwise

Energy

The ground state solution of equation (2.36) minimises the energy functional of the system

for a fixed number of particles

72
E= /dr I VW0 4 Vi (1) o 2 + & [ 2 (2.45)
2m 2
where E is the total energy of the system. The energy is then a function of density only

2 2
E(n) = /dr <§l—m|v\/ﬁ|2+nVext(r) + %) . (2.46)

The three terms in this equation correspond the the kinetic, harmonic oscillator, and inter-
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action energies respectively. When analytic solutions do not exist, the ground state of the
system can be found by numerically minimising equation (2.45). Direct integration of the

GPE yields the expression

1
== (Ekin + Eno +2Ein) (2.47)

which is exact within Gross-Pitaevskii theory and allows us to calculate the chemical

potential numerically by integrating over solutions to the GPE.

Expansion in Free Fall

In the Thomas-Fermi limit the expansion of the condensate in free fall may be modeled
analytically using a scaling approach introduced by Castin and Dum [37]. The time-
evolution of the gas is governed by scaling factors in each dimension A; obtained by
calculating the total force on a particle in the gas and using this in the Newtonian equation
of motion. The solution obtained by this method is also a solution of the GPE. This
allows us to calculated the evolution of a condensate with initial size R;(0) via coupled
differential equations for the scale factors A; rather than by full numerical solutions of
equation (2.36).
We take the time-dependent potential

V) =(1/2) Y mot(t)r; (2.48)
k=x,y,2

with @, (t) > @,(t). The scaling parameters for the condensate radii are solutions to the

equations

; (0)
PROYROYNOYRD

with the initial conditions A;(0) = 1. For our cylindrically symmetrical trap we have

M = — A2 ()i (1) (2.49)

0, (0) = wy(0) = @, and w;(0) = w;. In the case of free expansion all the trap frequencies
(1) go to zero at t = 0. We work with a dimensionless time scaled by the radial trap

frequency 7 = @, ¢. Under these conditions equation (2.48) reduces to

LY. (2.50)
A2 T 23 (04 (7) '

d? g2

™) = A2 (1)A2(1) 230

where € = @,/ ®, is the aspect ratio of the initial trap. For our traps € < 1. In the limit
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@, < o these equations have the analytic solutions

AL(t)=V1+72 (2.52)

A-(1) = 1+ €*(tarctanT — Iny/ 1 4 72). (2.53)

In this case the condensate expands rapidly in the radial direction because of interactions,
but the expansion in the axial direction is suppressed by a factor €2 so that for typical drop
times of the order of 15-20ms in our experiment there is very little axial expansion of the

condensate, A, ~ 1.

2.3.4 Elongated Condensates

The condensates we make in our experiment are highly elongated and can begin to cross
over from the fully three-dimensional regime we have been discussing so far into a one-
dimensional regime in which the radial modes of the system are kinematically frozen out.
The condition for this to occur in a condensate is that u < i@, and kg7 < hw;. Our
condensates typically have u ~2 —3 x iiw, in the static trapping potential. However in
the RF adiabatic potential each mode is more elongated than in the static potential, the
axial trapping frequency is relaxed and the number of atoms is halved. These condensate
modes do enter into the cross over regime between 3D and 1D behaviour.

The following discussion is taken largely from [38], but see also [39] [40] [41] [42]
and [43]. If we ignore the axial trapping potential, we can write the linear density of
a uniform system as n; = mtazL where a| = \/M is the radial harmonic oscillator
length. When an; > 1 the system is in the 3D Thomas-Fermi regime in which many
mode of the radial harmonic oscillator are excited. The radial density distribution will be
an inverted parabola with turning points R | = /2u/ ma)i =2a, (an)) 1/4 This system is
properly 3D even though it is highly elongated. It is commonly referred to as a 3D cigar.
In the opposite limit an; < 1 there is a perturbative regime in which mean-field theory is
still applicable, but the radial wavefunction approaches the gaussian single particle ground
State.

In the presence of an axial trapping potential, the equilibrium density distribution
along z can be calculated in the local density approximation. In this approximation the
condensate is assumed to be locally uniform at each point along the z—axis. We can then

fix the energy of the condensate via the equation of state

e (n1(z)) +V(z) = u (2.54)
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where (1 is the chemical potential of the BEC, determined by the normalisation condition
[ ni(z)dz = Np.
When Noaa, / a? > 1 we are in the radial Thomas-Fermi regime, and the axial density

1 /15Nyaa, \*° 2\’
nl(z):16a( = i) 1= (2.55)

where the axial Thomas-Fermi radius is Z = (a2/a, )(15Noaa, /a2)'/>. The local equi-

distribution is

librium chemical potential is i, (n;(z)) = 2./an;. In the opposite limit Npaa /a? < 1

and the radial motion is frozen out of the system. The axial density distribution is

1 [/ 3Nyaa 2/3 2
m) =, ( 22 L) (1 - %) (2.56)
Z

with the axial Thomas-Fermi radius Z = (a2/a_ )(3Noaa, /a2)'/3. The local equilibrium

chemical potential is u; (n;(z)) = 1+ 2an;. The local density approximation can be ap-
plied when the axial Thomas-Fermi radius Z > a;.

Gerbier calculated an analytical approximation that interpolates between the results
of equation (2.55) and equation (2.56) [44]." His approach is based on minimising the
chemical potential in equation (2.54) using a trial gaussian wave function for f [n;] where
the variational parameter is the width of the gaussian. The optimised width is 6, =
a, (1+ 4an1)1/ 4 which is slightly larger than the ground state harmonic oscillator width

a | . The local chemical potential is then

U, (n1(z)) =ho, (\/1+4an; —1). (2.57)

We can combine equations 2.54 and 2.57 along with the axial trapping potential to

obtain the axial density distribution

n(2) = % (1 - (%)2) [a (1 _ (§>2> +41 (2.58)

where oo = 2(u/hw, — 1). The condensate length L is evaluated using equation (2.54)
by setting ny (L) = 0 so that y, (n1(z)) = h, , giving L = (a?/a,)/a. The axial den-
sity is normalised to the number of atoms in the condensate. Using equation (2.58), the

normalisation condition gives an equation for o

'Note: van Aamerogen [45] pointed out that there are typographical errors in [44], which I have cor-
rected in the text. Note also that equation (2.57) is incorrectly written in [45] and [43] but used correctly
in [46] [47]. Numerical data from equation 5 in [38] can be found online at http://bec.science.
unitn.it/data/data_3D_1D.txt and agrees with equation (2.57) as written.
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o’ (a+5)* = (15x)* (2.59)

where the parameter y = Noaa / ag is roughly the ratio of the interaction energy to the
radial zero-point energy. This parameter governs how far into the 1D regime the BEC
is. In the limit & > 5 we are in the 3D Thomas Fermi regime and ot = ozp ~ (15)()2/ 3,
In the limit o¢ < 5 were are in the 1D mean field regime and @ = o;p ~ (3%)2/ 3. The

Crossover occurs at Qzp = o p when y = %52/3 ~3.73

2.3.5 Phase Fluctutations

In an elongated condensate such as we use in our experiments, density fluctuations are
suppressed the BEC transition temperature, but phase fluctuations driven by thermal exci-
tation can remain significant until the temperature drop much lower. These phase fluctua-
tions have a practical consequence for our experiment since we are interested in measuring
the relative phase between the two modes of the condensate.

The following analysis is outline in Petrov et al. [40] [48]. The field operator for the

atoms in this regime can be written

¥(r) = \/no(r) exp (i (r)) (2.60)
where (]3(1') is the phase noise operator, defined in terms of Bogolyubov excitations of the
BEC,! and the global phase S(r) has been ignored.

The single particle correlation function is given by [48]

<¢ﬁ(r')¢/(r)>: 10 ()0 () exp w 2.61)

with 8¢ (r,r') = ¢(r) — d(r').

Phase fluctuations are dominated by thermal excitations. The dominant contribution
is from low energy axial excitations (with energies &, < hw; ). These typically have
wavelengths longer than the radius R but shorter than the length L for a highly elongated
BEC. The relevant parameter that can be related to experimental measurements is the

mean square amplitude of the phase fluctuations. Near the centre of the BEC (|z|,|Z'| < L)

'Explicitly

R 1
0;(r) = W ;f;r(r)

where d; is the annihilation operator of an excitation with quantum number j and energy €;. The modes
fj+ = uj+v; are determined by the Bogoliubov-de Gennes equations for the excitations of the BEC. See
Pitaevski and Stringari, Bose-Einstein Condensation, Clarendon Press, 2003.

ﬁj + h.c.
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the mean square amplitude is given by [48]

([60(z,2))*) = 2|Z Z’ (2.62)

where Jr is a measure of the phase fluctuations on a length scale |z — 7| ~ L. It is given
by [48]

32ukpT
o(T) = —~—. 2.63
L) = 158, (heo,)? (E6%)
We can rewrite this expression as
3/5
T N
8.(T) = <7> (ﬁ) 52, (2.64)
c c
where
32“ | 4/3
2 _
<

For T <« T, we have N, ~ N and SL(T) = (T /T.)82. Measuring the mean square ampli-
tude of the phase fluctuations can thus be a form of thermometry for a BEC well below
the transition temperature where no discernable thermal component remains. Phase fluc-
tuations will be significant for 53 > 1. 56,2 strongly depends on the aspect ratio of the trap
®, /®, and weakly on the number of atoms in the BEC.

The characteristic temperature below which phase fluctuations disappear ( 87 ~ 1) is
defined as

15(ho,)*N,
2u

Above this temperature the phase fluctuates on a length scale smaller than L. In this

kpTy = (2.66)

regime we have a quasi-condensate, with suppressed density fluctuations but a fluctuating
phase along the length of the cloud. The phase coherence length is

Ty
lp=L (7) (2.67)

which is typically much longer than the correlation length (or healing length) of the BEC

h2

Below Ty phase fluctuations are suppressed and we recover a true BEC.
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Density Fluctuations in Free Fall

Phase fluctuations along the length of the BEC show up as density fluctuations in free fall
because the velocity field of a BEC is proportional to the gradient of the phase. The noise
in the velocity field is then
vs(r,1) = %V(ﬁ(r,t). (2.69)

To first approximation, phase fluctuations can be mapped on to an initial velocity distribu-
tion along the length of the cloud. Density fluctuations at long drop times are the result of
the interference of components of the BEC with different initial velocities and positions.
Since the initial phase distribution is random, the density fluctuations will vary randomly
from shot to shot. However average quantities, such as the mean square amplitude of the
fluctuations, should remain the same.

An analytical effective operator for the relative density fluctuations valid for drop
times it/h®? >t > 1 /ho? is given in [49] [50]:

5 £21 (E
o —2Y sin J () $i(2) (2.70)
T \hou(1-(2)?
J 11 L
where T = m, 1, €; = hw,+/j(j+3)/4 and ¢, is the phase operator for the jth mode.

The mean square amplitude of the fluctuations follow by averaging over different

initial phases. Near the centre of the BEC the average is

(2.71)

T 1 7 2
ATy V & pulnt

In the lab we measure (0gc/ng)>. We can then use this to estimate the temperature
of the BEC, given that we know the trap frequencies, chemical potential and drop time.
We can also take into account the finite resolution of our imaging system.

2.4 Absorption Imaging

All of our quantitative data comes from absorption images of atoms that have been re-

leased from the trap and allowed to expand sufficiently to be at low optical density for the
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probe beam. The probe beam intensity is well below the saturation intensity for the D2
transition in 8’Rb . Under these conditions the analysis of an absorption image is straight-
forward. The absorption of the probe beam in this regime is an exponential function of
the optical thickness of the ensemble. For a collimated beam propagating along the x-axis

the transmitted intensity profile is:

I'(y,2) = Ip(y,z)e o2p02) (2.72)

where Iy(y,z) is the intensity profile of the probe beam, o, the absorption cross-section
and nyp(y,z) = [n(x,y,z)dx the column density of the ensemble. The absorption cross
section is a measure of the probability that a photon is absorbed by an atom in the ensem-
ble. For a two level atom the it is

r 1/ Lsa

oL = ho~ (2.73)
214+ 1/ L +4(8)?

where Iy, is the saturation intensity, 0 is the detuning from resonance and I' is the nat-

ural linewidth of the imaging transition. We image on the f»3 transition using 6™ po-
larised light. With this polarisation the transition is closed, with a saturation intensity of
1.67mWcm™2. The quantisation axis is provided by a uniform magnetic field generated
by a set of external coils. The atoms are Zeeman shifted into resonance with the imaging
beam by the imaging field so that 6 = 0.

We can recover the column density of the atomic ensemble by dividing I'(y,z) by
Iy(v,z), where the imaging beam intensity profile Iy(y, z) is measured under identical con-

ditions during the same experimental run, and taking the natural log

1
nap(v,z) = —G—Lln(T(y,z)). (2.74)

where T (y,z) = I'(y,z)/Io(y,z) is the transmission. The total number of atoms is then

obtained by summing over the pixels of the CCD array

A

_ WAz
N = o Y In(T(y,2)) (2.75)

where Ay and Az are the dimensions of a pixel in the object plane.
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Chapter

Experimental Apparatus

In this chapter I describe the experimental set-up we use to produce a BEC in an atom
chip microtrap. Making a BEC is today a routine procedure that can be achieved using
standard textbook methods. We use an approach combining a double MOT system with
techniques developed to efficiently load the atom chip microtrap and evaporate to BEC.
With our set-up we can routinely produce nearly pure BECs with a few tens of thousands
of atoms in a trap conveniently located ~ 150 um from the surface of the atom chip.
There are many good introductions to the principles of laser cooling, magnetic trap-
ping, and evaporative cooling of atomic gases. I rely principally on Metcalf and Van der
Straten [51]. Rubidium data is taken from [15]. Many aspects of the apparatus have been
described in previous theses from the group [52] [53] [54]. Where these have changed

little I rely heavily on the descriptions given in these theses.

3.1 Laser System

We require lasers operating at several different frequencies to run the experiment. The
lasers are locked to spectral lines in the D2 transition in 3’Rb , as illustrated in figure 3.1.
The D2 transition connects the 525, /2 electronic ground state of the atom to the 52P; /2 €X-
cited state (one half of a doublet). The ground and excited states have hyperfine structure,
and I label transitions from F — F’ as frp. With appropriately polarised (¢™) light the
f23 transition is a cycling transition, required for efficient laser cooling. The D2 transition
has a natural linewidth of 27 x 6 MHz, giving a Doppler temperature of 147 uK.

During the initial magneto-optical trapping (MOT) stage we need a trapping laser red-
detuned by a few linewidths from f>3, and a re-pump laser tuned to fj;. Before turning
on the magnetic trap we optically pump the atoms into the F = 2, mp = 2 state using

light tuned to f>,. Finally, to image the atomic gas we need a short pulse of o™ light
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Figure 3.1: Schematic diagram of the ¥ Rb D2 line showing the hyperfine splittings
in the ground and excited states and the transitions used for laser cooling and ab-
sorption imaging. The F-number of the hyperfine levels is indicated. Transitions from
the ground state hyperfine levels F to excited state hyperfine levels F' used in the ex-
periment are labelled, specifically the principle transition f»3 used for cooling and
imaging, the repump transition f1, and the optical pumping transition f»;.

tuned to resonance with the f>3 transition.

We use a Ti:Sapphire laser to provide trapping light, and two diode lasers as a refer-
ence and repump laser. The lasers are locked to atomic spectral lines using a combination
of polarisation spectroscopy and a frequency offset lock. The frequency offset lock is also

used to rapidly switch the frequency of the trapping/imaging laser.

Laser Schematic

A schematic diagram of the laser system is given in figure 3.2. The components are de-
scribed below. The entire system is enclosed in a black box with holes for the trapping,
optical pumping and imaging beams, to minimise the effect of stray resonant light reach-
ing the experiment when the atoms are magnetically trapped. Blackout curtains around

the optical table serve a similar purpose.

Ti:Sapphire Laser

The trapping and imaging laser beams are produced by a Coherent MBR-110 Ti:Sapphire
laser pumped by an 8W Coherent Verdi V-8 diode-pumped solid state laser operating at
532nm. The output is linearly polarised, with a TEM spatial mode and a linewidth of
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Figure 3.2: Schematic diagram of the laser system used in the experiment showing
how light from the Ti:Sapphire and diode lasers is picked off for spectroscopy and
the frequency offset lock, and where the imaging light is picked off from the trapping
laser, and the optical pumping light from the reference laser. I also show where the
repump light is combined with the trapping light and distributed to the LVIS and main
chamber MOT beams, and the telescopes used to shape the imaging beam and MOT
beams.

100kHz [52].

Once locked to the reference cavity, the MBR-110 laser can be scanned up to 40 GHz
by changing the cavity length, which can be externally controlled. Coarse wavelength
selection is made by observing the fluorescence of the D2 line from a pick-off beam
passing through a rubidium vapour cell (see figure 3.2). We lock the laser to the required
frequency by controlling its reference cavity. The error signal for the lock is derived from
the beat frequency of the MBR-110 mixed with a reference laser locked to f>3 using a
frequency offset lock based on a design published in Schiinemann et al. [55]. Details
are again in Matt Jones’s thesis [52]. The MBR-110 provides the trapping beams for in
the LVIS and the main mirror-MOT. For laser cooling we red-detune these lasers 18 MHz
from f>3 (three times the natural linewidth of the transition). We use a shutter to ensure
that the beam is completely blocked when switched off.

Diode Lasers

The reference and repump lasers are home built external cavity diode systems. The exter-
nal cavity is provided by a grating mounted in the Littrow configuration. The design is a
slightly modified version of that published in Arnold et al. [56] and full details are given
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in Matt Jones’s thesis [52]. The frequency can be scanned through 3 GHz and the output
power at 780nm is around 30mW.

The reference laser provides the reference frequency for locking the MBR-110 and
locked to resonance with f>3. The repump laser is locked to fij;. We use a polarisation
spectrometer based on a design by Wieman and Hansch [57] to lock each of these lasers.

A detailed description of our set-up can be found in Matt Jones’ thesis [52].

Switching and Shuttering

We switch the trap laser, imaging laser and optical pumping lasers using acousto-optical
modulators (AOMs). These provide fast switching control for precise timing. In addition,
to ensure that all resonant light is blocked from reaching the main chamber during the

sensitive stages of the experiment, we block all beams with mechanical shutters.

MOT Beams

Light from the repump laser is combined with the trapping light using a polarising beam
cube. This light is then sent to two MOT systems: a mirror-MOT in the main chamber,
and a low-velocity intense souce (LVIS) that is used to load the mirror-MOT. The light
is first split into horizontal and 45° beams for the mirror-MOT, then the LVIS beam is
picked off from the horizontal MOT beam. The beams are telescoped immediately after

the combining beam cube. This set-up is illustrated in figure 3.2.

Optical Pumping Beam

The optical pumping beam is picked off from the reference laser and passed twice through
an AOM operating at 140 MHz. The resulting beam is 13 MHz red-detuned from f;,. We
use red-detuned light for optical pumping because the ensemble is optically thick for
resonant light when the MOT is large. The AOM also controls the switching of the beam,

and a shutter is in place to block it when not in use.

Imaging Beam

We pick off light from the MBR-110 for the imaging beam. This passes through an
AOM operating at 100MHz which provides precise timing control of the pulse used for
absorption imaging. A shutter is in place to block stray light from the beam when switched
off. The frequency of the imaging beam is detuned slightly from resonance with f3. This
detuning is compensated by the imaging magnetic field, as discussed in more detail below.
The imaging beam is telescoped after passing through the AOM. We switch between the

two imaging axes using a flip-mirror adjusted by hand between experimental runs.
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3.2 Vacuum System

The vacuum system consists of two chambers separated by a gate valve and a differential
pumping aperture. This aperture allows us to maintain ultra-high vacuum (UHV) condi-
tions in the main chamber while dispensing rubidium in the LVIS chamber and provides a
path for the LVIS beam to enter the main chamber. The LVIS design is based on the near

identical system described in Chris Sinclair’s thesis [53].

LVIS Chamber

The LVIS vacuum chamber consists of two 2% inch conflat six-way crosses connected by a
T-piece (see figure 3.3). The LVIS MOT is made in the cross closest to the main chamber,
which has four view-ports for the MOT lasers orthogonal to the cold atom beam. A mirror
with a small hole drilled through the centre for the LVIS beam to pass through is mounted
on a 2?—1 inch conflat flange attached to the port nearest the main chamber. We refer to
this as the extraction mirror. An additional conflat-mini viewport welded to the cross at
45° is used as a view port for observing fluorescence from atoms in the LVIS MOT. Two
rubidium dispensers are mounted on an electrical feedthrough fitted to the connecting
T-piece. A 201s~! ion pump (Varian Vaclon Plus 20) is connected to the chamber via
a short nipple. We shield the experiment from stray magnetic fields from the ion pump
by encasing it in a soft iron shell. We have also attached two angle valves, one used
to connect a turbo pump for the initial pump down of the vacuum chamber, the other
connecting to a by-pass tube which joins the cross to the region of the LVIS chamber
behind the extraction mirror. We used this by-pass tube when we set up the LVIS system
to ensure that this region of the chamber was properly evacuated during the bake-out of
the LVIS prior to opening the connecting valve between the LVIS and the main chamber.
The angle valve was then closed leaving the by-pass tube on the UHV side of the vacuum
system.

On the far side of the extraction mirror is a nipple with two conflat-mini viewports
welded orthogonal to the LVIS beam. These were included in the design to allow for
additional diagnostics on the LVIS beam after it passes through the aperture. In practice
this has not been necessary to get the LVIS working. This nipple is then connected to a

gate valve on the main vacuum chamber.
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Push Beam

Figure 3.3: lllustration of the experiment vacuum system as seen from above. The
LVIS is at the bottom left, separated from the main chamber by a gate valve and
differential pumping aperture. Pumping is provided by two ion-pumps and a non-
evaporable getter (NEG). Also shown is the ion-gauge used to monitor the vacuum
during pump-down, angle valves used to attach a roughing pump for the bake-out
and initial pump-down, and the feedthroughs for the LVIS dispensers. The atom chip
in the main chamber is mounted upside down on a single flange which also houses
the vacuum feedthroughs for all the intra-vacuum components. The windows used
for the MOT light in both chambers, and the imaging and optical pumping beams,
are indicated. The LVIS MOT and beam can also be monitored via the additional
viewports as shown. The 45° MOT beams in the main chamber enter via a large
viewport mounted on the underside of the vacuum chamber.
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Figure 3.4: Diagram of the extraction mirror mounted in a 2% inch conflat flange.
The position of the mirror is indicated in figure 3.3. The mirror is made from a
A /4 waveplate coated in aluminium to provide a reflective surface. A hole I mm in
diameter in the centre of the mirror provides an aperture for the LVIS beam. The
mirror is mounted into a recess machined into the flange and then attached with
Epoxy (Bylapox 7285).

Extraction Mirror

The extraction mirror is made from a 6mm thick A /4 waveplate drilled with a 1 mm
diameter hole at the centre. The back face of the waveplate is coated in aluminium to
provide a reflective surface. The reflectivity is 70% at 780nm. It is mounted in a modified
22 inch conflat flange (CF DN40).

Figure 3.4 is a schematic cross-section of the waveplate mounted in the modified
flange. A 3mm deep recess for the optic was machined in the centre of the flange, and a
3mm hole drilled through the centre. The hole is wider than that in the optic to allow for
easy alignment. We placed the waveplate into the recess and then applied expoy (Bylapox
7285) around the edge to secure it to the flange. Once the epoxy had cured, we attached
the modified flange directly to the six-way cross.

The aperture in the extraction mirror is the only connection between the main chamber
and the LVIS chamber. The pressure differential that can be maintained between the two
chambers is determined by the conductance of the aperture and the effective pumping
speed on the UHV side of the aperture due to the main chamber vacuum pumps. Under
UHV conditions, the molecular conductance C through the aperture is determined by its
diameter d and length / [53]. For an aperture 1 mm in diameter and 6 mm in length, the
conductance is approximately 0.021s~!. The pressure differential that can be maintained
across the aperture is approximately the conductance divided by the effective pumping
speed of the main chamber pumps on the UHV side of the aperture. We assume that all
atoms or molecules that pass through the aperture enter the main chamber, neglecting the
effect of the larger hole in the mounting flange and the nipple and gate valve between the
extraction mirror and the main chamber. The main chamber is pumped by a 201s~! ion
pump (Vaclon 20) and a non-evaporable getter (NEG). The effective combined pumping
speed gives a pressure ratio of about ¥ = 5 x 10*. In practice we observed no change in
the pressure in the main chamber when dispensing atoms in the LVIS chamber, measured
with the ion gauge attached to the main chamber. The pressure in the main chamber was
7 x 10~ Torr at this point.
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Because of the low conductance of the aperture, a by-pass tube connects to the nipple
on the UHV side of the aperture to an angle valve near the LVIS ion pump. This by-
pass was open during the initial pump down and baking of the LVIS vacuum system to
ensure that this part of the vacuum system was properly evacuated. The angle valve was
then closed before before the gate valve connecting the LVIS to the main chamber was

opened.

Dispensers

Two rubidium dispensers are attached to a flange on to the T-piece connecting the two six-
way crosses in the LVIS vacuum system. We use one dispenser to release rubidium vapour
into the chamber. The other was added as a back up in case of the first failing or becoming
exhausted. The dispensers, SAES getters commonly used in cold atom experiments [58],
release a rubidium vapour when resistively heated above a threshold temperature. During
operation we maintain a current of 2 A through the dispenser to keep it warm, which
allows the rubidium vapour to be switched on faster and more reproducibly. In order to
make an LVIS MOT we typically run 7.5 A through the dispenser for 15s.

Main Chamber

The main vacuum chamber is a spherical octagon made from 304 grade stainless steel by
Kimball Physics inc. It has eight 2% inch (DN40 CF) conflat ports around the perimeter,
and 8 inch (DN160 CF) conflat ports on the top and bottom. The bottom flange is sealed
with a viewport which allows optical access for the two 45° mirror-MOT beams. Four of
the perimeter ports are also sealed with viewports to give optical access to the horizontal
MOT beams and for optical pumping and imaging the ensemble.

One of the other four ports is connected via the gate valve to the LVIS chamber. The
cold atom beam enters the chamber through this port. One port is connected to an angle
valve (Lesker VZCR40R), used to attach a turbo pump for the initial pump down of the
chamber and the bake out. An ion gauge (Varian UHV 24p) is also connected to this
port via a T-piece between the chamber and the angle valve. The remaining two ports
are connected to vacuum pumps. One is a 201s~! ion pump (Varian Vaclon Plus 20)
mounted on the end of a 150 mm nipple, and surrounded by a soft-iron shell to shield the
main chamber from its magnetic field. The other is a non-evaporable getter (NEG) (Saes
Sorb-AC GP502F with an St-101 Alloy).
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Figure 3.5: Entire vacuum flange assembly including atom chip, chip mount and
auxiliary wires and coils used in loading atoms into the chip trap.

3.3 Top Flange Assembly

All of the components of the experiment inside the main vacuum chamber are mounted
on a single 8 inch conflat flange (DN160 CF). A photograph of the flange assembly is
shown in figure 3.5. The principle components are: the MOT coils, which provide the
quadrupole magnetic field needed for the initial mirror-MOT; a SAES getter, used to load
the mirror-MOT from a thermal vapour before the LVIS was brought on line; the atom
chip mounted on a ceramic base plate and a copper block connected via three legs to the
flange; and a copper H structure mounted in the ceramic base plate immediately below
the atom chip, designed as an alternative source of the magnetic field required to make
a loffe-Pritchard (IP) trap. The MOT coils are wound onto a stainless steel coil former
with a 12.5mm inner radius and a 45mm centre to centre separation. We typically run
2 A through the coils when we make a mirror-MOT, which gives a gradient of 11 Gcem™!

along the axis of the coils. The chip mount is described in more detail below.
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Figure 3.6: Model of chip mount. The mount is designed to be modular, allowing the
chip and substructures to be changed relatively easily. The chip is mounted onto a
ceramic base plate made from Shapal-M and held in place with mechanical clamps.
A macroscopic H-wire machined from oxygen-free copper is mounted into grooves in
the Shapal base plate and sits underneath the centre of the chip. It is used to provide
auxiliary magnetic fields for trapping and manipulating atoms. It also acts as a
heat sink conducting heat away from the chip wires to the chip mount. The Shapal
base plate is mounted onto a copper block that is attached to the vacuum flange
via three thick copper legs. Further auxiliary wires are mounted below this copper
block (not used in the experiments described in this thesis). Also shown are the clips
that connect to the chip wires (described in the main text). The clips connected to
the tightly spaced Z-wire flares are held in place with macor clamps. The clips are
soldered to wires that connect to the vacuum feedthrough pins and are not shown in
this illustration.

46



Experimental Apparatus 3.3 Top Flange Assembly

Chip Mount

The chip mount is illustrated in figure 3.6. It is designed to provide electrical connec-
tion to the chip wires and conduct heat away from the chip wires as efficiently as possi-
ble. The chip is mounted directly onto a 5mm thick base-plate made from Shapal-M, a
machinable ceramic made from aluminium-oxide chosen for its good thermal conductiv-
ity (90Wm~'K~1) and mechanical strength. It is held in place with copper clamps which
screw into holes tapped into the Shapal. Embedded into the Shapal base-plate is an H-
wire made from oxygen-free copper, which has a 2mm square cross section, and a central
cross-piece 2mm long. This copper structure sits directly below the centre of the atom
chip, where the majority of the heat generated by the chip wires is dissipated and plays an
important role in conducting heat away from the chip when the experiment is running.

The H-wire sits in a groove machined out of the Shapal base-plate and is held in place
with UHV compatible epoxy (Bylapox). In order to get a smooth surface for the chip
to sit on, we initially made the H-wire 2.2mm thick so that it extended 200 m above
the Shapal surface. Once it had been glued in place and the epoxy had cured, we hand
polished the surface until the H-wire was level with the Shapal.

Below the Shapal piece is a 7mm-thick copper block, which is connected to the top
vacuum flange via three copper legs, each with a 5mm square cross section. The legs are
21.5mm long. The various pieces of the mount, Shapal base-plate, copper block and legs,
are held in place with vacuum relieved stainless steel screws. Together they conduct heat

away from the chip to the top flange, which acts as a heat sink for the experiment.

Chip Wire Connections

The chip wires flare out into pads at the corners of the chip to provide a surface that can
be used to make electrical connections. These pads are closely spaced around all four
corners of the chip. We make the electrical connection to these pads using 1.5 mm wide
clips that mechanically clamp onto the edge of the chip - see figure 3.6.

The clips are commercially made (by Batten & Allen) from a copper-tin alloy (CuSng).
The four clips that connect to the Z-wires at either end of the chip are held in a clamp made
from two blocks of Macor screwed against one another. Grooves in one Macor block hold
the clips at the correct pitch to connect to the closely spaced Z-wire pads. All the other
clips are connected individually to the various chip wire pads. The clips are soldered to
macroscopic wires that connect to the vacuum feedthrough pins via beryllium-copper in-
line barrel connectors. The solder is UHV compatible fluxless solder from Allectra. We
have not observed any adverse effects of the solder on the vacuum that we can achieve in

the main chamber.
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When we originally mounted the chip the clips made good electrical connection to the
chip wire pads, adding no significant resistivity to the chip wires. We tested the response
of the clips to several cycles of resistive heating and cooling and observed no change in
either the electrical connection or the mechanical strength of the clip. The clips were
protected from the conductive doped silicon substrate by the layer of silicon-oxide grown
before the gold from the chip wires was evaporated onto the chip. Where the clips were
placed very close to one another, or to the copper H-wire running under the centre of the
chip, we used Kapton foil as an additional insulating layer. Mounted in this way, there
were no observable cross-connections amongst the chip wires or between the wires and
the chip mount.

Subsequently we have run into problems with these clips. We believe that they have
not maintained their mechanical stability under the stress of repeated cycles of heating and
cooling, which may have weakened the grip of the clips on the chip over time. We also
believe that the clips may have scraped through the thin silicon-oxide layer that insulates
the doped-silicon on the back and edges of the chip, creating cross-connections between
the chip wires, and connection between the wires and the chip mount.

At the time of writing, there are cross-connections between the various chip wires
with a resistance of a few hundred Ohms, and connections to the experiment common
point (ground) via the chip mount of 1-2k€. We believe that these connections are made
via the silicon substrate where the silicon-oxide layer has been scraped off by the clips
as they move under repeated thermal cycles. We have had to change the way that we
control DC current through the chip wires because of these problems. However despite
these problems, we are still able to successfully make BECs and observe matter wave
interference using this chip, as described in subsequent chapters.

Electrical connection to to the outside world is made via three smaller flanges ma-
chined directly into the top flange: two 1% inch conflats and one 2% inch conflat. We
connected vacuum feedthroughs directly to these flanges. The two smaller feedthroughs
are made by Ceramaseal. Each has 8 copper feedthrough pins 0.81 mm in diameter. The
larger feedthrough is from MDC Vacuum Products. It also has 8 pins, each 2.39mm in

diameter. They can be seen in figure 3.5.

3.4 External Fields

LVIS Coils

The quadrupole field for the LVIS MOT is generated by anti-Helmholtz coils wound di-

rectly around the vertical ports of the six-way cross using insulated copper wire. There
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are 100 turns in each coil, with an average diameter of about 4.5 cm and a mean separation
of about 6.5cm. With a typical oprating current of 2 A, coils generate a field gradient of
15Gem™! along the axis of the coils.

There are also two sets of shim-coils wound in Helmholtz configuration around the
vertical and horizontal ports of the six-way cross. Each pair can generate a field of ap-
proximately 1.5G per Ampere. These fields from the shim-coils are used to align the
LVIS with the hole in the extraction mirror. We can also use the shim fields to switch off
the LVIS beam while the LVIS MOT is running by shifting the centre of the quadrupole
away from the hole.

Main Chamber Coils

The most important fields for running the experiment are the X-bias and Z-bias. The X-
bias field cancels the field from the trapping wires along a line to form the magnetic trap,
and the Z-bias is aligned along the trapping wires and sets the magnitude of the field at
the bottom of the trap, as shown in figure 2.1. The X-bias field is also used for absorption
imaging through the diameter of the cloud, as in figure 3.11. These fields are provided
by coils in near-Helmholtz configuration mounted around the main chamber. The X-bias
coils provide a field of up to 30G along £. The Z-bias coils provide a field of a few gauss

along Z. Additional shim coils in provide fields of up to a few gauss along .

3.5 Atom Chip

Fabrication

One of the basic motivations behind atom chip experiments is the possibility of controlling
the motion of the atoms on small length scales and with large trapping frequencies. The
minimum length scale over which a static magnetic field can vary significantly is set by
the distance to the source of the field, a consequence of Laplace’s equation. This suggests
working with atoms trapped close to small wires is preferable. Similarly, the achievable
field gradient (and thus trapping frequency) increases as the atoms move closer to a wire
(saturating at a finite value close to a wire of finite width and height). The maximum
field gradient for a wire of finite width is proportional to I/w?. The maximum current
density achievable is limited by resistive heating of the wire, and is proportional to Vhw?
(assuming a rectangular wire of height 4 and with one surface of width w in contact with
a heat reservoir of constant temperature). The gradient thus scales as B}, o< \/W [59]
[23].
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(a) Atom Chip (b) Chip Wires

Figure 3.7: Figure 3.7(a) is a photograph of our atom chip before it was mounted
in the vacuum chamber. The four central wires are not visible at this scale, but
can be distinguished at the edge of the chip where they fan out into larger pads for
connection to macroscopic wires. The two end wires, and surrounding gold pads
can also be seen. Figure 3.7(b) is an optical microscope image of the four parallel
Z-wires in the center of the chip. The outer wires are 100 um wide and have a centre
to centre separation of 300 um. The smaller inner wires are 50 um wide and have a
centre to centre separation of 85 um.

These criteria set the basic parameters of atom chip fabrication. Achieving high cur-
rent density dictates using a wire with good bulk conductivity and homogeneity, and using
a substrate with good thermal conductivity so the wire does not overheat. Gold, silver and
copper wires have all been used in atom chip experiments, typically on silicon or sapphire
substrates. We use an atom chip with gold wires patterned onto a p-doped (100) silicon
wafer [60] with a resistivity of 17-33 Qcm. Silicon has advantages over other substrates,
such as sapphire, which may have slightly better thermal conductivity. It can be prepared
with an atomically smooth surface, which is important for minimising deviations in thin
wires. It is also the basis of a mature fabrication industry, with many techniques available
that are readily adapted to developing atom chip technology. The silicon is wet-oxidised
in a furnace to create a 100nm layer of SiO, to electrically isolate the gold wires from
the substrate. The oxide is kept thin to maintain good thermal conductivity between the
wires and the silicon. Setting conservative limits on how much we can heat the chip wires
(a 50% increase in the chip wire resistivity, or a temperature rise of about 100°C) we can
run current densities of up to 9 x 10° Am—2 for over ten seconds, which is sufficient time
to run our experimental cycle.

The limiting factor in trapping atoms close to the surface of a wire is the homogeneity

of the wires themselves. Surface roughness, edge roughness and bulk defects lead to

50



Experimental Apparatus 3.5 Atom Chip

small transverse current components that introduce an anomalous magnetic field along
the length of the trap. When the magnitude of this field approaches the temperature of the
atomic cloud, the cloud breaks up into lumps. This anomalous potential roughness also
increases as the atoms come closer to the trapping wire.

There are three processes standardly used to fabricate an atom chip: wires can be
electrochemically deposited into a mould defined by a patterned resist, etched out of a thin
film of metal covering the substrate, or evaporated onto the substrate through a patterned
mask [27] [59]. Detailed studies have suggested that the third method, also known as lift-
off, results in considerably smoother wires than electrochemical deposition [20] [23] [24].
Our atom chip is prepared with a variation of the second technique in which the wires are
etched with an ion-beam out of an evaporated gold film. Similar wires have been studied
in other groups [25].! Other etching techniques studied produced considerably rougher
wire edges and/or surfaces [60] [62].

Ion Beam Milling

The wires were patterned in a multi-step process, illustrated in figure 3.8. In the first
step, a 3 um layer of gold was evaporated onto the substrate. Since gold does not readily
adhere to the oxide layer covering the silicon wafer, a 50nm layer of chromium was first
deposited onto the surface. The gold was then evaporated in six steps of 600nm each. The
result was a gold film with good bulk conductivity and an optical quality surface. There
was no indication of any layering effect due to the multiple step evaporation process, and
what cracks and grain can be seen in the sides of the wires cross multiple layers — see
figure 3.9(a) and figure 3.9(b).

In the second step the wires were patterned by ion-beam milling. A 2.2 um thick
layer of HPR504 photoresist was spun onto the surface and patterned by ultra-violet (UV)
lithography. The resist was then heated to allow it to reflow, which prevents slivers of re-
sist forming during the ion-beam milling, which are then difficult to remove. The surface
was then ion-beam milled, removing the gold layer under the gaps in the resist. Because
of the reflow, the resulting wires have a trapezoidal cross-section, with the sides angled at
30° to the surface normal, as seen in figure 3.9(b).

The resulting wires have an optically smooth surface suitable for making a mirror-
MOT. An unintended consequence of the ion-beam milling was that the silicon substrate
between the wires was over etched by approximately 1 um. Some of the silicon removed
during the milling was redeposited on the sides of the wires, forming conductive bridges

that crossed the thin insulating oxide layer. This redeposited silicon was removed with

"However, note that Simon Aigner refers to focussed ion-beam milling in Figure 2.11 of his thesis [61].
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(a) Gold Layer Evaporated onto Silicon Substrate

(b) Resist Spun onto Gold Surface

|
|

(c) Resist Patterned via UV Lithography
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(d) Re-flow of Resist

(e) Ton Beam Milling
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Figure 3.8: Schematic diagram illustrating the process of fabricating our atom chip.
In the first step, figure 3.8(a), the silicon substrate is wet-oxidised to create a 100nm
layer of Silicon-Dioxide. A 50nm layer of chromium is then deposited, followed by
a 3um evaporated gold layer. Finally, figure 3.8(b), the photoresist is spun onto the
gold surface. In the second step, figure 3.8(c), the photoresist is patterned by ultra-
violet lithography, removing photoresist from where the gaps between the wires will
form. The photoresist is heated and allowed to reflow, figure 3.8(d), which prevents
hard to remove fragments of resist sticking to the gold following the ion-beam mill.
After the reflow, the cross section of the resist above the wires is trapezoidal. In the
final step, figure 3.8(e) the entire structure is ion-beam milled. The wires have a
trapezoidal cross-section, inherited from the photoresist. The ion-beam over mills
the gaps between the wires, removing the chromium, silicon-dioxide, and some of the
silicon substrate. Because of this, some silicon can be redeposited across the sides of
the wires during the ion-beam milling, forming conductive bridges between the wires.
This material is subsequently removed by a potassium hydroxide etch.
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potassium hydroxide (KOH), which will etch silicon anisotropically but leaves the gold
intact. This etch removes the unwanted bridges from the sides of the wires and a further
2 um layer of silicon from the wafer, leaving behind a rough surface, which can be seen
in the gaps between the wires in figure 3.7(b). The resulting cross-resistances between

neighbouring wires were measured at 2-3 MQ prior to mounting the chip.

Wire Imperfections

innos_ltd 5.0kV 11.1mm x18.0k SE(

(a) Side of Chip Wire (b) Chip Wire Cross Section

(c) Small Wire

Figure 3.9: Scanning Electron Micrographs (SEM) of the chip wires after ion-beam
milling. Figure 3.9(a) shows the side of the wire. Structures such as grains and cracks
in the gold cross the five 600nm layers in which the gold was evaporated (which are
not apparent in the micrograph). Similar structure can be seen in the bulk of the wire
in figure 3.9(b), which shows a cut away cross-section of a wire. The 30° angle of the
sides of the chip wires to the surface normal is indicated. The image in figure 3.9(c) is
an optical microscope image of one of the 50 um wide smaller wires near the centre
of the chip.

Typical fabrication techniques, such as those used for our chip, minimise fluctua-
tions at short (sub-micrometre) correlation length, which are negligible for our geometry.
Longer wavelength fluctuations, which are difficult to observe with standard techniques

for characterising wires, are less well understood.
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At short wavelengths the power spectrum of a wire can be estimated from SEM
images such as figure 3.9(a). Wires such as ours display what is referred to as self-
affine fractal roughness,! described by an empirical correlation function (f(z) f(z+7)) =
o2Exp[—(r/&)?¥], where « is referred to as the Hurst exponent, 62 = ( f(z)?) is the mean
square roughness, and & is the correlation length. For wires similar to ours, typical param-
eters are ¢ = 3nm, £ = 20nm and o = 0.5 [27]. At long wavelengths it is more difficult
to measure these parameters accurately - typically many SEM images must be carefully
stitched together [23]. For our experiment parameters, with atoms trapped 150 um above
a 50 um wide wire running 2 A the corresponding magnitude of the fluctuating field com-
ponent |8B;| is < 1mG (or ~ 1kHz), significantly smaller than the roughness we measure
with our atoms. This suggests that the fragmentation we observe in cold atomic ensem-
bles (see chapter 4) is due to fluctuations at longer wavelengths, which may be due to
thermal processes, such as the re-flow of the resist, or acoustic vibrations during the ion

beam milling.

3.6 Current Control

To create the magnetic fields required to run the experiment, we need to control the current
running in various coils and in the chip wires. The current control circuit is discussed
below. The circuits are controlled by analogue input voltages. For simple switching of
coils we use 2-way and 4-way analogue level setter circuits that provide a fixed voltage
depending on the state of TTL logic inputs (one or two digital input signals). The chip
wire currents, X-bias field and Z-bias field are all ramped linearly during the transfer
from one experimental stage to another. The control voltage for these ramps is provided

by analogue voltages from a National Instruments analogue output board (see below).

Op Amp Circuit

We control DC currents through the chip wires using a simple home built operational
amplifier (OpAmp) current source. The design is based on circuits previously used to run
the experiment that used a high power field effect transistor to control the current through
the load [52] [63]. These circuits connected the load directly to a voltage source, with
the switch (a field effect transistor) between the load and ground. Our current chip wires
connect to the experiment ground with a resistance of less than 1k€ (see the discussion in

section 3.3 of chapter 3), so with these circuits we were unable to switch off the current in

'A self-affine fractal is invariant under anisotropic transformations, so the scaling in each direction can
be different.

54



Experimental Apparatus 3.6 Current Control

12v -12v

Trimmer
Circuit

Integrator

T1-1T
Transformer

DS345
‘ Signal
Generator

Figure 3.10: Schematic diagram of the full circuit chip wire current control circuit.
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the chip wires completely. The field gradient from this latent current not only adversely
affected the shot-to-shot stability of the experiment, but made interference experiments
impossible.

The control circuit uses a high-powered Operational Amplifier (OPA548 or OPA549
from Burr-Brown) as a current source. The circuit is illustrated in figure 3.10. It is
stabilised by an integrator with variable gain. Feedback comes from a 0.5 €2 sense resistor
which is fed into a differential amplified for comparison with the control voltage. The
circuit can be run in uni-polar or bi-polar mode, and we have tested it as an AC current
driver running 1 A peak-to-peak current at a few 10s of kHz through the chip wires.

We typically operate the circuits in uni-polar mode. The OPA549 is powered by a
single high-power linear laboratory power supply connected to V. The control circuitry
(and the V'~ pin on the OPA549) is powered by a floating linear power supply (typically
£15V and 200mA). The entire circuit shares a single common point. We trim the input
voltage with a separate circuit in order to accurately zero the current running through the
chip wires in the off state. In this configuration the circuit will switch off the current in a
resistive load like the chip wires in less than 100 us. The circuits are built on aluminium
heat-sinks to help dissipate the power that is dropped over the OPA549 during operation.

For applications requiring large currents, multiple OpAmps can be connected in a
master-slave configuration, with the additional OpAmps connected to the output as volt-
age followers. An inductive load such as the X-bias coil can be run stably without the
additional integral gain circuitry. A capacitor and resistor across the OPA549 provide

sufficient integral gain for stable operation and proportional gain for fast switching.
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3.7 Radio Frequency Generation

We need to apply radio-frequency fields both to evaporatively cool the atoms and to split
the condensate, which we do by applying an intense RF field to dress the atoms. The
RF adiabatic potentials that result are described in detail in the following chapters. We
use two different types of frequency generator for the two applications. One drives RF-
currents through the chip wires, and the other through the copper-H mounted beneath the
chip.

Versatile Frequency Generator

The radio-frequency fields for forced evaporative cooling are provided by a Versatile Fre-
quency Generator (VFG150). The VFG150 allows almost arbitrary control of pulses and
pulse sequences at frequencies up to 150 MHz with an output power range of -69dBm
to 0dBm. The frequency, amplitude and phase of the waveform can be specified at each
point in the sequence, which can be generated with simple scripting tools. The sequence
is sent to the VFG150 via a USB interface, where it is stored on board. We then trigger

the sequence at the appropriate moment using an external TTL signal.

DS345

The radio-frequency fields used to split the condensate are generated by two phase locked
Stanford Research Systems DS345 Function Generators, which can output up to 24dBm
at up to 30MHz. We set the amplitude of each DS345 separately using the rear panel
amplitude modulation input, controlled by an analogue output channel (see below). Fre-

quency sweeps are triggered with an external TTL signal.

Switching, Amplification and Connection

We control the switching of the RF fields using ZASWA-2-50DR switches from Mini-
Circuits. These have a typical rise/fall time of Sns and an in-out isolation of 100dB at
frequencies of up to 100MHz. This gives us precise timing control over the RF field,
and allows us to fully attenuate the field (the amplitude modulation input on the DS345
provides insufficient attenuation). We connect one switch to the output of each of the
DS345s. In order to generate the large fields required to make the RF adiabatic potentials,
we use one amplifier (Mini-Circuits ZHL-32A) for each function generator, connected to
the output of the RF switches. These provide 25dB gain.

We couple the RF for the adiabatic potentials directly onto the chip wires used for DC
trapping. We couple the RF to each wire using an RF Transformer (Mini-Circuits T1-
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1T). We isolate the transformer from the DC current using a capacitor. This is illustrated
schematically in figure 3.10. We connect the VFG output to the copper-H via a ZHL-32A
amplifier. It is used to generate the chirped RF field needed for evaporative cooling in the

chip wire magnetic trap.

3.8 Experiment Control

In order to run the experiment we need to control the switching of many currents, fields
and lasers with sub-millisecond timing. We use hardware from National Instruments to
provide this control: one digital pattern generator (National Instruments PCI-6543), and
one analogue output board (National Instruments PCI-6713). Custom written software,
originally written by Chris Sinclair to run the video-tape BEC experiment in our labora-
tory, provides the user interface. The software allows us to specify the state of digital and
analogue output channels in a linear sequence of events. An entire waveform is gener-
ated and then sent to the relevant output boards. The timing of the sequence of events is
then controlled by the boards. This allows us to run the experiment on a Windows com-
puter system while still maintaining precise timing control. Details are given in Chris’s
thesis [53].

3.9 Imaging System

Camera

All of our experimental data comes from images acquired using a CCD camera. We have
used two cameras over the course of the experiments described in this thesis, both Penta-
MAX cameras from Princeton Instruments made with CCD arrays from Kodak (Kodak-
768 and Kodak-1035). One camera has 768 x 512 pixels each with an area of 9 x 9 um.
The other has 1317 x 1035 pixels of 6.8 x 6.8 um. The cameras are controlled by im-
age capture software from the manufacturer (WinView). During an experimental run, the
camera is initialised by a programme executed form within our control software, then
waits for a TTL hardware trigger from the digital pattern generator. When the trigger is
received, the camera shutter opens to expose the CCD array. We typically expose and
read out the entire array in a single shot, which takes about 330ms for the larger array.
The exposure time is set by adjusting a parameter within WinView prior to executing an
experiment.

The cameras are electronically cooled to -30°C. The sensitivity of each camera at

780nm has been accurately calibrated against a power meter [64] [52]. The Kodak-768
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chip has 0.019 counts per photon, and the Kodak-1035 chip 0.026 counts per photon.
Each camera has a 12-bit DAC, so that each pixel records between 0 and 4095 counts.

There are two basic methods of imaging an ensemble of cold atoms: fluorescence
imaging and absorption imaging. We capture fluorescence images of MOTs for qualita-
tive diagnostic purposes when optimising the experimental parameters for making BECs.
All quantitative data from the experiment comes from absorption images of cold atomic
ensembles and BECs.

Imaging Set Up

T~
I >
I >

/ | ‘
[—— T_' x
\ O O
/\ H Imaging
U U Axis 1
@)
Split
Condensate
[
O Lens H Waveplate
Imaging Axis 2

Polarising Beam Splitter

Figure 3.11: Absorption Imaging Set Up.

The absorption imaging system is set up to allow us to image either along £ or Z, as
shown in figure 3.11. We refer to the former as imaging axis one, and the latter as imaging
axis two. We switch between the two directions using a flip mirror that is adjusted by
hand between experimental runs. The camera is aligned at an angle (25°) to imaging axis
1, chosen to avoid etaloning of the imaging beam by the glass casing around the CCD
array of the camera. As a result, the horizontal and vertical magnifications are different.
Imaging axis 2 is aligned parallel to the horizontal MOT beam, with which it shares its
optics. It is combined with the MOT beam using a polarising beam cube, so that it has
an orthogonal polarisation. After exiting the chamber the beam passes through a second
A /4 waveplate and is then picked off with a second polarising beam cube. The beam
is directed onto the same camera as before, also at an angle of 25°, with two steering

MIrrors.
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The imaging beam is picked off from the trap laser and passes through a 100MHz
AOM (see figure 3.2) as described above. After the AOM the beam is linearly polarised
with a polaroid linear polariser, spatially filtered with a 40 um pinhole, and recollimated
with a 12mm full-width half-maximum gaussian profile. The large spot size ensures even
illumination of the atom ensemble. The frequency of the trap laser during the imaging
sequence is set using the VCO input on the frequency offset lock so that the imaging
beam is tuned to resonance with the f,3 transition of the imaged atoms in the appropriate
uniform imaging magnetic field (aligned along the X- or Z-axis). The ¢ polarisation
with respect to the relevant imaging field is set by a A /4 waveplate placed in the beam
path immediately prior to entering the chamber. The AOM sets the duration of the imaging
pulse at 30 us. The intensity of each imaging beam is controlled by a polarising beam
cube and A /2 waveplate in the beam path just in front of the flip mirror. We typically
image with an intensity of ~ 1mWcm™2, which is a compromise between maximising
the signal from the atoms (a greater percentage of light is absorbed at lower intensity) and
using the full dynamic range of the camera.

Along axis one, the image is formed by a single spherical lens in a near-2 f configura-
tion with magnification M = 1.2. The lens is a pair of achromatic doublets placed back to
back with a nominal focal length of 80.5mm (Comar 03 TT 25). It is mounted on a mi-
crometer stage bolted to the optical table for fine focal adjustment, and typically placed a
little under 150 mm from the centre of the chamber. The resolution of this imaging set-up
1s 6.5 um. It can also be used to capture fluorescence images of the MOT that are useful
when optimising the experimental sequence.

Along axis two, the image is formed by two spherical lenses, both precision achromats
(Melles-Griot 01 LAO 625 and 01 LAO 688). The first has a nominal focal length of
200mm, the second a nominal focal length of 400mm. The magnification along this
imaging axis M = 1.8. The lenses are mounted on a micrometer stage bolted to the optical
table for fine adjustment. The micrometer stage allows separate Z-axis adjustment of the
two lenses, but common X-Y adjustment.

This imaging system is designed to give optimal resolution given the limitations of
the optical access to the chamber along this axis. The numerical aperture of the imaging
system is ultimately limited by the diameter of the viewport on the chamber and the
distance to the centre of the chamber. The viewport is 110mm from the centre of the
chamber and has a diameter of 30mm, which gives a diffraction limited resolution of
3.5pum at 780nm. The numerical aperture is currently limited by the 25 mm diameter of
the beam cube shown in figure 3.11, which is 175mm from the centre of the chamber.
This introduces spherical aberrations that decrease the resolution of the imaging set-up to

approximately 7 pm.
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Chapter I

Making BECs

In this chapter I describe the experimental sequence we use to produce a BEC in our atom

chip microtrap, and characterise a typical BEC used in our interference experiments.

4.1 Experimental Sequence

4.1.1 Low Velocity Intense Source

Following the successful implementation of a double-MOT system using on a low veloc-
ity intense source of atoms (LVIS) and a mirror-MOT in the videotape experiment de-
scribed in Chris Sinclair’s thesis [53], which was based on the system described in [65],
we decided to build a near identical system for the interferometer experiment.

The principle behind our double MOT system is to have one MOT, called the LVIS,
operating at relatively high background pressure to load a second MOT maintained at low-
pressure. The LVIS is used to trap and cool a large cloud of atoms, which are transferred
to the low-pressure chamber via a small aperture. These atoms can be recaptured in
the secondary MOT without a significant rise in the background pressure of the low-
pressure chamber. This is critical for maintaining a long lifetime for the atomic cloud in
the magnetic trap used for evaporative cooling to BEC.

The LVIS is a standard 6-beam MOT with one simple modification: one of the six
laser beams has a shadow in the centre created by an aperture in one of the retro-reflecting
optics, which we call the extraction mirror. Atoms in the centre of the LVIS feel a net force
because of this shadow and are pushed out of the MOT, through the aperture, and towards
the mirror-MOT in the main chamber, where the atoms are recaptured. The hole that
defines the cold atom beam is made small to limit the molecular conductance between the

LVIS vacuum chamber and the main chamber, allowing a large pressure differential to be
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Figure 4.1: lllustration of the operation of the LVIS. Shown are the MOT coils and
quadrupole field, four of the six laser beams (the other two point into and out of
the page), the trapped atoms at the centre of the LVIS, and the LVIS beam, which is
pushed out through the hole in the extraction mirror towards the main chamber.

maintained even during the operation of the double-MOT system.

We load the LVIS MOT from a Rubidium dispenser, typically run at 7.5 A for 15-17s.
In between experiments the dispenser is kept warm with a 2 A current to speed up the turn
on of the dispenser and maintain a stable "off” state. During this time the LVIS is centered
on the shadow so that the LVIS beam is on and loading the mirror-MOT. After turning off
the dispenser we allow the LVIS beam to run for 2 more seconds.

The LVIS beam is easily aligned once the two MOTs are both in operation, and can
be optimised with minimal adjustment of the shim fields and push beam. It readily loads
the mirror MOT with a physically large cloud with ~ 10° atoms. Operating in this way,
the loading step from the mirror MOT to the magnetic trap is saturated, which aids the
shot-to-shot stability of the experiment. Detailed diagnostics were carried out in by Chris
Sinclair with the near-identical system used in the video-tape BEC experiment in our
lab. He estimated the beam flux to be ~ 1 x 10% atoms per second with a velocity of
20ms~! < v < 10ms~! and divergence of ~ 40mRad [53].

4.1.2 Mirror MOT

The mirror-MOT approach illustrated in figure 4.2, used in the first atom-chip BEC ex-
periments [66], takes advantage of the reflective surface of an atom chip such as ours.
It employs 4 trapping beams, two parallel to the chip surface (which we refer to as the

horizontal beams) and two that are reflected off the surface at 45° (the 45° beams). The
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Figure 4.2: Illustration of the mirror MOT showing the two 45° MOT beams reflect-
ing off the chip surface. The horizontal MOT beams are not shown (they point into
and out of the page). I have labelled the MOT coils and quadrupole field, and the
shim field used to position the MOT near the chip surface.

beams are circularly polarised as in a standard MOT, because the beams have their helic-
ity reversed on reflection. The major advantage of this approach is that the mirror-MOT is
semi-integrated into the atom-chip, which allows us to pass through a UMOT stage when
loading the magnetic trap (discussed below).

The required quadrupole magnetic field comes from coils mounted in the chamber at
45° to the surface of the chip. The 45° MOT beams pass through one of these, which
makes for easy alignment. These two beams enter the vacuum chamber through the large
viewport below the chip. The diameter of the MOT beams is 25mm, which is slightly
larger than the width of the atom chip. We thus use the entire atom chip surface to make
the mirror-MOT. The horizontal beams, perpendicular to the page in figure 4.2, are aligned
with respect to the viewports on the vacuum chamber (using pinholes placed in front of
the two viewports). Crude alignment of the beams with the MOT-coil former and the
chamber viewports is enough for the mirror-MOT to work well. Fine adjustment of the
alignment is made by tweaking the pointing of one of the horizontal beams to ensure that
the UMOT is properly optimised (see below).

During the 15-17s loading phase we run 2 A through the coils to give a gradient along
the axis of the coils of 11Gem™'. The trap laser is 3I" red-detuned from resonance with
f23 during the loading phase, where I" is the natural linewidth of the D2 cooling transi-
tion (6 MHz). The total power in the trapping lasers is approximately 15 mW per beam,
adjusted to maximise the number of atoms in the mirror-MOT. We adjust the centre of the
quadrupole field using the main chamber shim coils in order to maximise the number of

atoms we load into the mirror-MOT. The initial MOT is loaded around 4 mm below the
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surface of the atom chip. Previous studies in the group have indicated that the mirror-
MOT loads inefficiently any closer to the surface than this [67] [52].

The mirror-MOT loading sequence, including the mirror-MOT and LVIS MOT param-
eters (beam pointing and shim fields), is adjusted empirically to give the largest possible
mirror-MOT at the end of the loading sequence. In practice this is estimated from uncal-
ibrated fluorescence images of the mirror-MOT. These images do not allow us to make
absolute measurements of the number of atoms trapped in the mirror-MOT, but they do
give reasonably accurate relative measurements of the mirror-MOT size. The absorption
image, even at a short time of flight, extends beyond the field of view of the imaging sys-
tem, which is framed by the chip and the MOT coils former. We estimate that we typically

capture over 10 atoms at a temperature of a few hundred uK during the loading cycle.

4.1.3 UMOT

Once we have loaded the mirror-MOT with as many atoms as possible, we bring the trap
closer to the surface in order to transfer the atoms to a magnetic trap. This step in the
experimental sequence, efficiently transferring atoms from the dissipative MOT to the
conservative magnetic trap, is perhaps the most difficult and important in making a BEC.
The two traps must be well overlapped so that as many atoms as possible are loaded into
the centre of the magnetic trap to prevent excessive heating in the transfer. The goal is to

maintain as high a phase space density as possible.

y %
—
I=2A
Z
— |
X Bias
—

Figure 4.3: Illustration of the UMOT, which uses the same trapping light as the
mirror-MOT, but a quadrupole field generated by the chip wires which a net current
that runs in a U-shape. The field from these wires produces the quadrupole shown
near the surface of the chip with the addition of the bias field labelled in the diagram.

The vital step in our experiment in making this transfer is to use an intermediary MOT
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in which the quadrupole magnetic field is provided by the chip wires rather than the MOT
coils. We run 2 A in each of two chip Z-wires and 4 A in one of the end-wires. The net
current from the Z-wires and the end-wire runs in a U-shape, illustrated in figure 4.2. If
we add a uniform bias field along X, the net magnetic field forms a quadrupole below the
chip wire. The center of this quadrupole is not immediately below the central wire, but
just on the outside the U. It can be rotated into closer alignment below the centre of the
chip wire by adding a uniform field along §. Since the same Z-wires are used to make
the magnetic trap that catches the cloud when released from the UMOT, the two traps are
automatically aligned provided that the MOT beams are properly balanced (which can be
easily achieved).

The UMOT has the added benefit of compressing the MOT in the direction perpen-
dicular to the chip wire because the magnetic field gradient from the chip wires is several
hundred Gauss per centimeter in the radial direction, and less than 2Gem™! along the axis
of the trap. The shape of the mirror-MOT thus changes from roughly spheroid to an elon-
gated ellipsoid that more closely matches the contours of the Z-wire magnetic trap. This
change in shape also allows the atom density in the centre of the UMOT to increase. The
density in a MOT is ultimately limited by the radiation pressure of photons absorbed from
the trapping lasers and multiply rescattered by the atoms. This pressure can be reduced
by further detuning the trapping laser or reducing its intensity. It can also be reduced by
changing the trap geometry: in an elongated UMOT photons do not need to travel very far
to exit the trapping region radially, which reduces the probability of rescattering. Earlier
studies in our group have shown that the density (and phase space density) of a MOT can
be significantly increased by a combination of detuning the trapping laser and compress-
ing the MOT into an elongated geometry [67] [52]. We follow both these strategies when
transferring to the UMOT.

We transfer to the UMOT in two steps. The initial mirror-MOT is first brought closer
to the surface by ramping on a uniform bias field along the X-axis (we refer to this as
the Xbias field - it is also used to make the Z-wire magnetic trap). This ramp occurs over
50ms, and is accompanied by adjustments of the shim fields to align the mirror-MOT with
the UMOT. At this point the mirror-MOT is centered about 1 mm below the surface of the
chip. We then simultaneously switch off the MOT coils and switch on the chip wires,
replacing one quadrupole field with another. The trap lasers stay on during the switch.
We hold the UMOT in this configuration for 20ms to allow the atoms to be recaptured,
then move the trap closer to the surface again by increasing the Xbias field with a linear
ramp over 20ms in preparation for transferring to the Z-wire magnetic trap. As we move
the UMOT closer to the surface, we simultaneously red-detune the trapping laser to 6I"

away from resonance with the trapping transition, further increasing the density of the
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UMOT near the centre of the trap.
At the end of this transfer sequence the UMOT is 0.5 mm below the surface of the

chip. There are about 103 atoms in the cloud, at a temperature of ~ 300 uK.

4.1.4 Optical Molasses

At the end of the UMOT stage, we further cool the atoms with a short optical molasses
stage lasting 3ms. During this stage all the magnetic fields are switched off, the laser
is further detuned to ~ 20I", and the laser power is reduced to ~ 3mW per beam. An
efficient molasses requires well balanced light forces and small residual magnetic fields
(Iess than 100mG). We make no attempt to cancel all stray bias fields and implement
a full optical molasses stage. However this short molasses stage does increase our the
efficiency of loading atoms into the magnetic trap. We can also observe the molasses
dissipating in real time on the infra-red video camera set up to observe the main chamber.
This provides a useful diagnostic for the balancing of light forces in the experiment, since

the molasses will rapidly shoot off in one direction if the balance is poor.

4.1.5 Optical Pumping

Before catching the atoms from the UMOT in the magnetic trap, we optically pump them
into the F = 2, mp = 2 stretched state. We use 6 polarised light slightly red-detuned
from the f;, transition, which rapidly transfers the atoms into the F = 2, mp = 2 state.
Since this state is dark for this polarisation, there is little residual heating of the atoms
during this stage. The optical pumping beam is red-detuned 13 MHz from the f,, optical
pumping transition using a double pass AOM, shown in figure 3.2. We use red-detuned
light because the atomic cloud is optically thick for resonant light. After the AOM the
beam is spatially filtered, expanded to 6mm in diameter (FWHM), and combined with
the imaging beam along imaging axis one using a polarising beam cube. It is circularly
polarised by the same A /4 waveplate immediately prior to entering the chamber, but with
the opposite helicity. We use the Xbias field, which is aligned along the X-axis in the
opposite direction to the imaging field, to set the quantisation axis for the atoms, with
respect to which the optical pumping beam polarisation is o+. The optical pumping cycle
lasts for 1.2ms. The optical pumping pulse itself is 400 us long and comes in the middle

of this sequence. The pulse transfers nearly all the atoms into the F =2, mp = 2 state.
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Figure 4.4: Illustration of the double Z-Wire configuration that we use for magnetic
trapping. Each wire carries 1 A DC current, and a uniform bias field is added to
create the trap. A further bias field aligned along 7 provides the field at the minimum
of the trap (not shown in the figure).

4.1.6 Initial Magnetic Trap

The spin-polarised atoms can now be caught in a loffe-Pritchard magnetic trap shown in
figure 4.4. In order to match the shape and position of the magnetic trap as closely as
possible to the shape of the cloud released from the UMOT, we make as deep a trap as we
can at the position of the atoms, about 0.5 mm below the surface of the chip. The depth
is limited by the amount of current that we can safely run through the chip wires without
overheating them. We run 2 A through the same two Z-wires that were used to make the
UMOT, which automatically aligns the main trapping axis of the two traps. This gives a
trap depth of 15G, limited by the presence of a second trapping minimum near the chip
surface. This also sets the position below the surface that we catch the atoms.

With these parameters we catch approximately 5 x 107 atoms in the initial magnetic
traps at a temperature of ~ 100 uK. The trap frequencies in this configuration are @, =
2w x6Hz and | =27 x 1kHz.

4.1.7 Compressed Trap

The initial 2-wire loffe-Pritchard trap is held for 50 ms to ensure the trapping fields have
stabilised and to catch as many atoms as possible. We then ramp to a compressed trap with
much larger radial trapping frequencies that is more favourable for evaporative cooling.
We linearly ramp up the Xbias field from 15G to 27.5G in 100ms. We cannot maintain
2 A in two chip wires without overheating them, so we ramp off the current in one of
the wires as the Xbias field is increased. After the compression the trap frequencies are
o, =271 x 28Hz, o, = 27w x 2kHz, the field at the bottom of the trap is 0.9G, and the
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trap 1s 130 um below the surface of the chip.

During the compression the atoms are heated to ~ 500 uK. The trap depth does not
increase in proportion to the heating of the cloud, so the hotter atoms spill out of the
compressed trap. This initial spilling occurs over a period of about 2s, during which
time we hold the trap without applying any RF. At the end of the 2s we are left with
5 x 10% atoms in the trap at a temperature of ~ 100 uK. This is the starting point for
forced evaporative cooling to BEC. We try to operate the experiment so that we cannot
increase the number of atoms left in the compressed trap at this point. In this sense we
saturate the loading sequence, deliberately operating with a much larger MOT and initial
magnetic trap than is needed, so that the starting point for evaporation to BEC is less
sensitive to long term drifts in the experimental parameters such as the trap laser power or
beam pointing. The background-collision limited lifetime of the trap is over 20 seconds,

which is more than enough to evaporate to BEC.

4.1.8 Evaporative Cooling

Once we have allowed the hot atoms to spill out of the compressed trap, we begin forced
evaporative cooling of the cloud. We typically apply an RF current to the copper-H un-
derneath the atom chip (see figure 3.6 in chapter 3) to selectively remove the hot atoms
via induced spin flips. We evaporate to BEC with a single exponential ramp from 15 MHz
to 0.67MHz over 4.6 seconds. During the final stage of the evaporation ramp we reduce

the power in the RF to minimise the effect of power-broadening.

4.2 Cold Thermal Clouds

Towards the end of the evaporation ramp the cold thermal cloud begins to break up into
lumps as the atoms begin to see anomalous field components 6B, (z) along the length of
the wire that have their origin in imperfections in the wires used to make the trapping
fields (see the discussion in section 2.2 of chapter 2). These components give rise to
a spatially varying trapping potential along the length of the wire, which the atoms see
when they become sufficiently cold.

The practical consequences of this potential roughness for our experiment are twofold:
we are limited in how close we can bring the cold atomic cloud to the wires because
the anomalous components scale exponentially with distance, and they introduce both a
random component to the field at the minimum of the trapping potential and a curvature
dB/dz in the trapping field that we cannot calculate a-priori. Neither of these is a major

limitation. We do not need to bring our condensates closer to the trapping wires, and
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we can measure empirically both the trap bottom and axial trapping frequency, and since
the potential roughness is determined by material imperfections in the wires it does not

change over time.

4.2.1 Fragmentation
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| ————
b) 3.6 K
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Figure 4.5: Fragmentation of Cold Thermal Clouds: Towards the end of the evapora-
tion ramp, the cold thermal cloud begins to sample the rough potential at the bottom
of the trap due to anomalous field components that have their origin in deviations in
the flow of current through imperfect wires. Colder clouds break up into lumps along
the length of the wire. We see here absorption images of successively colder thermal
clouds in this rough potential, and the corresponding line density of each cloud. A
condensate begins to form in the largest of these lumps in the final image. We can
analyse the density distribution of the cold thermal clouds (the first three images) to
extract information about the anomalous field components - see the main text.
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We can infer variations in the trapping potential along the z-axis from the density
distribution of a thermal atomic cloud imaged in free fall. We take an absorption image of
the cloud a short time after the trapping potential has been switched off, during which time
there is no significant axial expansion of the cloud (typical numbers are an axial trapping
frequency @, = 271 x 6Hz, a temperature of 1 uK and a 2ms time of flight, during which
time the cloud has expanded axially less than 1%). The axial density distribution in free
fall thus closely approximates the in-trap distribution.

The temperature of the cloud is determined from the transverse expansion of the cloud
in free fall, where the width of the cloud is measured at various different times of flight
(see figure 4.6 for an example measurement). By measuring the temperature in this way
along the length of the cloud we can also check that the cloud is in thermal equilibrium,
and that we are justified in treating the axial and radial trapping potentials as separable.
We can also infer the distance of the cloud from the trapping wire by measuring the

position of the centre of mass of the cloud as it falls.
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Figure 4.6: Temperature and Magnification: We measure the temperature of the cold
thermal cloud by fitting a gaussian to the transverse density distribution at various
drop times and solving equation (2.29) to find the rate of expansion. The same mea-
surement is used to cross-check the magnification of our imaging system by fitting
the acceleration of the centre of mass of the cloud to the expected acceleration due
to gravity. For the data presented here, the temperature of the cloud is ~ 1.25uK
and the magnification (on imaging axis one) is confirmed to be 1.2, which is what we
calculate from the geometry of our imaging set up (see section 3.9 of chapter 3).

Since the cloud is in thermal equilibrium, the axial trapping potential can be inferred

from the atomic density distribution using Boltzmann’s law,
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V(z) = —kpTIn (ny,(z)). 4.1)

In the absence of fluctuations, the underlying potential is parabolic,! and we can fit to
V(z) with the cloud temperature as the fit parameter, and check the temperature of the
cloud against the time of flight measurement. To extract information about the fluctuating
component of the potential, we subtract the parabola from the measured density distribu-
tion, In[ny(z)]. What remains is 8B, /kgT, and since we know T we can directly infer
OB;. This procedure requires that the thermal cloud be continuous along the length of the

trap so that we can accurately fit to the underlying potential.
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Figure 4.7: This figure illustrates the steps in analysing the anomalous potential
roughness from an absorption image of a cold atomic cloud. The three data sets cor-
respond to the clouds shown in figure 4.5. The temperatures of the clouds, inferred
from the gaussian fits to the axial density distribution shown in figure 4.7(a), were
7, 3.5 and 2 UK respectively. The number density is normalised to the total atom
number. Figure 4.7(b) shows the axial trapping potential reconstructed from equa-
tion (4.1). The underlying harmonic potential is extracted from a fit to the data. After
subtracting the harmonic potential, what remains is the anomalous potential rough-
ness shown in figure 4.7(c). Only the centre section of this figure gives meaningful
data because the of the rapid drop off in signal to noise in wings of the distribution.

!with a trapping frequency @, = 27 x 6Hz

70



Making BECs 4.3 Bose Einstein Condensation

This analysis is illustrated for three successively colder clouds in figure 4.7. The three
data sets correspond to the clouds shown in figure 4.7. The temperatures of the clouds,
inferred from the gaussian fits to the axial density distribution shown in figure 4.7(a),
were 6.4 uK, 3.6 uK and 1.9 uK respectively. The number density is normalised to the
total atom number. Figure 4.7(b) shows the axial trapping potential in arbitrary units,
reconstructed from equation (4.1). The underlying harmonic potential from the ends of
the Z-wires is extracted from a fit to the data. After subtracting the harmonic potential,
what remains is the anomalous potential roughness shown in figure 4.7(c). To analyse the
data we look at the centre section of the cloud where the signal to noise ratio is good. In
the following I have taken the data from 0.9 mm to 2.9 mm in figure 4.7(c).

The scale of the potential roughness is set by the field of the wire at the position of the
trap, By = ol /2wd = 24.8 Gauss. The root mean square roughness of the anomalous po-
tential shown in figure 4.7(c) is 6B = 5.6 mG, which corresponds to 6B/B = 2.2 X 1074
at a distance of 156 pm from the trapping wire. Therefore the angular variation of the cur-
rent in the wire is ~ 2 x 10~#Rad, which, given the wavelength of the potential roughness
is ~ 0.5 — I mm, corresponds to a transverse wandering of the wires of ~ 50 — 100nm

This shows that the roughness has nothing to do with microscopic wire imperfections
of the type discussed in section 3.5 of chapter 3. It is due to uncontrolled factors in
the fabrication process, probably during the reflow of the resist (such as acoustic noise
during the heating phase). Whatever the origin, the practical consequence is that the
axial trapping potential is dominated by contributions from the anomalous magnetic field
components that cannot be calculated a priori, but must be measured empirically. Since
the trapping wires are used to apply RF fields to create the adiabatic potentials we use in
our interference experiments, these components will also exist in those fields. The fact
that the dominant feature of the spectrum is at such a long wavelength is also good in the
sense that it is much longer than the axial size of our condensate, which means that the

condensate sits in a relatively smooth dip in the rough potential.

4.3 Bose Einstein Condensation

In the following section I describe and analyse the Bose-Einstein condensates that we
use in our interference experiments. As with the majority of atom chip experiments, the
BEC is highly elongated, which leads to important modifications to the properties of the
BEC. In particular, we observe phase fluctuations along the long axis of the BEC that
affect the coherence of the interferometer, as discussed in detail in chapter 7. The radial
confinement is tight enough that our BECs are no longer fully 3D in character, but not so
tight that they are rigorously 1D.
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Our experimental data is extracted from measurements of the density distribution of
the ensemble n(r) = ny(r) + n,(r), normalised to the total number of particles N =
[ n(r) = No+ Nyj,. To analyse the density distribution of the falling cloud we integrate
the 2D absorption image over the y—axis to obtain a line density n(z). We then fit a gaus-
sian to the wings of the thermal component and a Thomas-Fermi profile to the centre of

the distribution

M)

n(z) = ap €xp (_ 262
z

a(1- (§)2)2 ifz<L

0 otherwise

4.2)
n(z) =

4.3.1 BEC Transition

We typically reach BEC at a transition temperature 7. ~ 0.5 uK. Figure 4.8 shows ab-
sorption images of a cloud after 10.4 ms time of flight as we cross the transition to BEC,
along with corresponding slices through the centres of each cloud. The transition to BEC
is clearly apparent in the emergence of a bimodal density distribution. The final slice
shows the Thomas-Fermi density distribution of a nearly pure BEC with ~ 1.5 x 10*
atoms and a chemical potential u = h x 3kHz. This is typical of the BECs that we use in
our interference experiments.

In figure 4.9 we see absorption images of a BEC at different different times-of-flight.
The anisotropic expansion of the BEC in the radial and axial directions is a clear marker of
the transition to BEC, since a thermal cloud will expand isotropically, whereas the aspect
ratio of an elongated BEC will be inverted in free fall (see the discussion in section 2.3 of
chapter 2). The axial expansion of the condensate is barely apparent after 17.4ms time of
flight.

4.3.2 BEC Parameters

In order to control the parameters of the interference experiments that we run, it is impor-
tant that we carefully characterise our static trapping potential and the parameters of our
condensate. In the following section I summarise how we do this and present typical data

from the day to day operation of our experiment.
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Figure 4.8: Evaporation to BEC: We see here absorption images of the cold thermal
cloud crossing the BEC phase transition. A pronounced bimodal density distribution
typical of the BEC transition is evident in the second image. In the third image almost
no thermal component is evident and we are left with a nearly pure condensate with
~ 1.5 x 10* atoms and a chemical potential u = h x 3kHz, which is typical of the
condensates used in our interference experiments.
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Figure 4.9: BEC in free fall after the trapping potential has been suddenly switched
off. The time of flight is indicated at the top of each image. The aspect ratio of the
BEC is clearly inverted in free fall.

Static Trapping Configuration

The static trapping configuration we use for our interference experiments is illustrated
in figure 4.10. We use two broad wires to create the DC magnetic trap for our BEC:
wire Z3 is 50 um wide and wire Z4 is 100 um wide. Both wires are 3 um thick, and the
centre-to-centre separation of the trapping wires is 107.5 um. To calculate the transverse
components of our static trapping potential we use the analytical expression for the field
of a wide wire given in equation (2.13). The quadrupole field around the trap minimum
is slightly rotated because of the asymmetry between the two trapping wires. The finite
thickness of the trapping wires makes no significant contribution to the trapping potential.

To make the DC trapping potential we run 1 A in each of the DC wires in series from
a single current driver. In the illustration the current runs into the page, and the trap is
formed by adding a bias field along the x—axis of 27.5G. The trap forms 132 um below
the surface of the chip. The transverse trap frequency is ~ 27 x 2+ 0.05kHz.

Trap Frequencies

We measure the axial trapping frequency by displacing the condensate with a field gradi-
ent, then releasing it and allowing it to oscillate in the trapping potential. The measured

frequency, seen in figure 4.11(b) is @, = 27 x 28.2(1) Hz.
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Figure 4.10: Static Trap Configuration: We use two broad wires to create the DC
magnetic trap for our BEC. Wire Z3 (on the left in the figure) is 50 um wide and wire
Z4 (on the right in the figure) is 100 um wide. Both wires are 3 um thick. The centre-
to-centre separation of the trapping wires is 107.5 um. Note that because the trapping
fields are generate by two wires, there are two local field minima. The BEC forms in
the lower of the two trapping minima shown in the figure. To calculate the transverse
components of our static trapping potential we use the analytical expression for the
field of a wide wire given in equation (2.13). We run 1 A in each of the DC wires in
series from a single current driver. In the figure the current runs into the page, and
the trap is formed by adding a bias field along the x—axis of 27.5G. The trap forms
132 um below the surface of the chip. The finite thickness of the trapping wires makes
no significant contribution to the trapping potential. The quadrupole field around the
trap minimum is slightly rotated because of the asymmetry between the two trapping
wires.
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Figure 4.11: Trap Frequencies: We see here the measured axial and radial trapping
frequencies. The axial frequency is measured by displacing the condensate with a
field gradient, then releasing it and allowing it to oscillate in the trapping potential.
The radial frequencies are measured via parametric heating of the atoms using an
AC current drive in the copper-H substructure below the atom chip (see section 3.3
of chapter 3), which produced an AC field oriented along the x—axis. Two frequency
components are evident in figure 4.11(a), which is expected because the asymmetry
of the trapping wires introduces a small asymmetry in the radial trapping potential.

The radial trapping frequencies are measured via parametric heating of the atoms us-
ing an AC current drive in the copper-H substructure below the atom chip (see section 3.3
of chapter 3), which produces an AC field oriented along the x—axis. This oscillating field
shakes the trap. When the frequency of the driving AC field is resonant with the trapping
frequency, the atoms will be heated out of the condensate. Two frequency components at

about 2kHz are evident in figure 4.11(a).

Trap Minimum & Condensate Lifetime

We measure the static magnetic field at the position of the atoms by outcoupling atoms
with an RF knife. The RF field is generated by applying an RF current to the copper-
H below the chip, just as in the parametric heating measurement of the radial trappping
frequencies. We scan the RF frequency and monitor the outcoupling of atoms from the
trap. Shown in figure 4.12(a) is a typical quick scan of the trap used to check the magnetic
field the trap minimum before running an experiment. From day to day the trap minimum
will change by up to =5kHz, but it is stable over the course of a given experiment (run
over a few hours) to within +1kHz. In this data the trap bottom is at ~ 648 kHz. For our
interference experiments we use a trap with a minimum at 630kHz.

The condensate lifetime is measured with an RF knife held at the end frequency of
the evaporation ramp so that any atoms that are heated out of the condensate are lost from
the trap. The measured lifetime of ~ 1.25s is much longer than the time needed to run

an interference experiment. The lifetime of the condensate is consistent with measured
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Figure 4.12: Trap Minimum & Condensate Lifetime: We measure the trap minimum
by outcoupling atoms with an RF knife. Shown here is a typical quick scan of the trap
used to check the position of the trap minimum before running an experiment. From
day to day the trap minimum will change by up to £5kHz, but it is stable over the
course of a given experiment (run over a few hours) to within +1kHz, which corre-
sponds to a magnetic field change of ~ 1mG. The minimum here is at ~ 648 kHz.
For our interference experiments we use a trap with a minimum at 630kHz. The
condensate lifetime is measured with an RF knife held at the end frequency of the
evaporation ramp so that any atoms that are heated out of the condensate are lost
from the trap. The measured lifetime of ~ 1.25s is much longer than the time needed
to run an interference experiment.

technical noise in the apparatus. We have not been able to completely remove noise

in the chip wire currents, perhaps because of the cross-connections amongst the wires

and between the wires and the experiment common point via the chamber described in

section 3.3 of chapter 3.
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Figure 4.13: Condensate Density Profile: The figure on the left shows the axial line
density of the BEC. A 3D Thomas-Fermi profile is a very good approximation of this
density distribution. The figures on the right shows the radial line density. Two fit
functions are shown: a 3D Thomas-Fermi profile (blue) and a gaussian (red), which
is the expected radial profile of a 1D condensate. Both fit functions give a reasonable
approximation to the data.
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We typically fit the density profile of the BEC to the fit functions given in equa-
tion (4.2), which describe a three dimensional condensate. The axial line density closely
fits the expected Thomas Fermi profile, as can be seen in figure 4.13(a). In this figure
the peak linear number density is ~ 300 um~"!. The radial line density is also closely ap-
proximated by a 3D Thomas Fermi profile. If we fit a gaussian distribution, the expected
radial distribution in the 3D-1D crossover regime, the fit (shown in red) is slightly better,
which suggests that we do start to sample some of the physics of the crossover regime.

For the BEC analysed in this chapter we calculate from equation (2.59) that y ~ 4.53
and o ~ 3.88, which suggests that we are in the 3D Thomas Fermi regime. The crossover
point between 3D and 1D behaviour in the mean field regime occurs when the chemical
potential 4 < hw |, which leads to the condition nja < 1, corresponding to a linear density
of ~ 200 um~" for 8’Rb atoms in the F = 2, myp = 2 state. The peak linear density in the
BEC analysed in this chapter is 7; ~ 300atoms um ™!, putting us in the 3D Thomas Fermi

regime. However the average linear density is much lower (around 130 atoms pm™1).

4.3.3 Phase Fluctuations

Although the condensates we use do not cross over into the 1D regime, the aspect ratio
is sufficiently large (typically @, /@, ~ 71) to induce phase fluctuations along the length
of the condensate. These are of practical consequence in our interference experiments
since they can introduce a changing relative phase along the length of the condensate.
In the following we characterising these longitudinal phase fluctuations, following the
theoretical outline discussed in section 2.3 of chapter 2.

In order to measure the amplitude of the phase fluctuations in the lab, we follow
the procedure outlined in the papers by Dettmer et al. [49] [50]. The elongated con-
densate is allowed to expand freely after the trapping fields are suddenly turned off. In
free fall, phase fluctuations along the length of the cloud are turned into density fluc-
tuations because the velocity field of the condensate is directly related to the phase via
equation (2.69). We measure the amplitude of these density fluctuations and infer the
amplitude of the phase fluctuations from this measurement.

Typical images of our condensates at 15ms time of flight are shown in figure 4.14.
Significant density modulations along the length of the cloud appear at long drop times.
In the lab we measure the amplitude of these fluctuations (oggc/ng)?, defined by equa-
tion (2.71). We can then use this to estimate the temperature of the BEC, given that we
know the trap frequencies, chemical potential and drop time.

We measure (Oppc/ng)? with the following procedure: we fit a Thomas Fermi profile

n(z) =b+a(l—(z—c)?/w?)? to the axial line density of the condensate, from which we
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Figure 4.14: Emergence of Phase Fluctuations: We observe density modulations in
free fall due to longitudinal phase fluctuations in our condensates. The top two figures
show typical absorption images after 15 ms time of flight. In the figure on the left there
are significant density modulations. The corresponding line density along the length
of the cloud (integrated across the y—axis) shows pronounced deviations from the
Thomas-Fermi profile of an ideal condensate. The amplitude of these fluctuations is
larger in the centre of the cloud than in the wings (where imaging noise dominates).
In the image on the right the evaporation ramp was taken to a lower end frequency
so that the temperature and size of the resulting condensate is smaller. Some density
modulations are still apparent, but the amplitude is much smaller. This is typical of
the condensates we use in our interference experiments.

estimate the number of atoms in the BEC and the chemical potential; we then estimate
(oBEC/ n0)2 by calculating the mean square deviation of the density profile from the fit
near the centre of the BEC (|z| < L/2); we estimate the background noise (o7 /ng)*by
calculating the mean square deviation of the density profile from the fit in the wings of
the profiles (|z| > L).

Significant density fluctuations oggc > 2067 appear at long drop times. The position
of the modulations varies from shot to shot (since the phase fluctuations are random),
but the amplitude remains fixed for a given condensate. From these measurements we
can estimate the temperature of the BEC - in the condensate presented on the left of
figure 4.14 the temperature estimate is 7 ~ 100nK. Since we have no independent means

of calibrating this measurement it is difficult to estimate the error in this figure. The
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estimate of 100nK takes into account the finite resolution of the imaging system (6.5 tm)
- see [50] for details of how this is done.

When we evaporate further so that the condensate has fewer atoms, the amplitude of
the density fluctuations diminishes, as in the image on the right of figure 4.14. This is
typical of the condensates that we use for our interference experiments. For this BEC, we
estimate a phase coherence length of 23 wm, which is about half the condensate length
(41 pm). So we expect there to be roughly two independent phase domains along the
length of the condensate, each with half the atoms in the whole condensate. The effect of

this on our interference experiments is discussed in chapter 7.

Elongated BEC

5 ms 3ms 7 ms | 12 ms

Figure 4.15: Elongated BEC: Images of an elongated condensate made using a
slightly different experimental set-up in our apparatus. The radial trapping frequency
was @ = 21 x 2.3kHz and the axial trapping frequency was ®, = 27w X 6.5Hz.
The resulting aspect ratio of ~ 350 is much greater than our typical BEC. The
number of atoms in this condensate is typically 3 x 10* and the chemical poten-
tial U = h x 4kHz. With these numbers the condensate is still not in the 1D regime,
but enters deeper into the crossover region than our typical BEC. Significant density
modulations at long drop times are due to the presence of longitudinal phase fluctu-
ations. We have still however successfully carried out interference experiments with
this BEC.

As a point of comparison we have also carried out interference experiments with much

more elongated condensates that exhibit far more pronounced phase fluctuations. A typ-
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ical sequence of images taken at various different fall times are shown in figure 4.15.
Significant density modulations are clear at long drop times. We estimate that the phase
coherence length of this condensate is 3.5 um, which is much shorter than its Thomas
Fermi length (110 pm).

This BEC is far more elongated than our typical condensate, with a radial trapping
frequency of @, = 27 x 2.3kHz and an axial trapping frequency of @, = 27 x 6.5Hz.
The resulting aspect ratio is ~ 350. The number of atoms in this condensate is 3 x 10*
and the chemical potential i = & x 4kHz. The peak linear density is ~ 95atoms pum~!.
We estimate the temperature at ~ 300nK, well above the characteristic temperature for
the disappearance of phase fluctuations(6 nK). I show data from interference experiments

performed with this condensate at the end of chapter 7.
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Chapter

RF Adiabatic Potentials

5.1 Introduction

Xbias

Figure 5.1: [lllustration of how we produce a double well using RF adiabatic po-
tentials. We use two parallel wires for both the DC and RF fields used to produce
the trapping potentials. The static trapping field from a two wire trap is illustrated
in black. Both wires carry the same DC current, and the field from these wires is
cancelled by a uniform external bias field at a height h above the surface of the atom
chip. A uniform bias field along the z—axis (not shown in this figure) sets the field
at the minimum of the trapping potential. The RF current is added to the same two
wires, but with a T phase shift between the two wires so that the vertical field compo-
nent adds to give the RF field vector illustrated in red in the figure. This perturbs the
atoms, forming a double well potential along the axis where the RF field is aligned
with the DC quadrupole field so that the coupling of the atoms to the RF field is
weakest.

The idea that cold atoms could be trapped and manipulated by RF adiabatic potentials
was first put forward by Zobay and Garraway [68] [69]. The basic idea is simple: atoms
sitting in a local static magnetic field are dressed by a strong near-resonant RF field. In this

system the mp states are thus no longer eigenstates. Instead, we can move to the basis of
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dressed states, which are a combination of the internal state of the atom and the photons in
the RF field. We can call these 71y states, labelled by analogy with the Zeeman sublevels.
If the energy of the riip states varies in space then the atoms feel a changing potential
energy. By suitably engineering the static and RF magnetic fields we can then trap atoms
in these dressed states. The 7y states can be weak-field or strong-field seeking, but the
restriction that only weak-field seekers can be trapped is relaxed because the potential that
the atoms see is a result of the interaction between two spatially varying fields (the DC
field and the RF field), which can have both local maxima and minima in free space.l

Various configurations of RF adiabatic potentials have been used in cold atom exper-
iments. The original idea of Zobay and Garraway was to produce a 2D trapping potential
by dressing atoms in a quadrupole trap with a resonant RF field to produce a bubble
trap. When gravity is added to the trapping potentials, the atoms will sit in a thin sheet
at the bottom of the bubble. This trap has been successfully implemented by Perrin and
co-workers [71] [72] and DeMarco and co-workers [73]. A similar configuration can be
used to make a ring trap for atoms [74] (see also [75]). RF adiabatic potentials have also
been used to alter the properties of static magnetic traps to reduce spin flip loss [76], to
manipulate atoms in free fall, for example to make lenses [77].

To make a double well potential we follow the approach of Schumm et al. and
dress atoms trapped in a Ioffe-Pritchard trap with a near-resonant linearly polarised RF
field [S] [78]. In our experiment the RF fields are generated by AC currents added to the
DC trapping wires, as illustrated in figure 5.1. The frequency is red-detuned with respect
to the field at the minimum of the static trap. The polarisation dependence of the resulting
RF-dressed state potential (or adiabatic potential) causes a double well to form along the
axis of weakest coupling. This configuration has been studied extensively, both theoret-
ically [79] [80] and experimentally [78] [81]. It is simple to implement and allows us to
smoothly deform a single well into a double well potential such that we can coherently

split a single condensate in two, as we will see in chapter 7.

Double Well Potential

The basic idea for creating the double well potential we use in our experiments is illus-
trated for a two level system in figure 5.2. We will assume that the RF field is linearly
polarised along the y—axis, and the static trap is given by equation (2.6). The eigenen-
ergies of the atoms in the static field (bare states) are given by the dashed lines, and the
dressed state eigenenergies are given by the full lines.

There are two possible configurations that produce a double well, depending on the

!Trapping configurations for strong field seeking ity states have been proposed - see for example [70].
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(c) Subresonant RF: Dressed Basis (d) Supraresonant RF: Dressed Basis

(e) Subresonant RF: Double Well Potential (f) Supraresonant RF: Double Well Potential

Figure 5.2: RF Adiabatic Double Well Potential: There are two possible configura-
tions for making an RF adiabatic double well potential depending on the detuning
of the RF field with respect to the field at the minimum of the static magnetic trap.
If vgr < %Bo the RF field is subresonant everywhere. This is illustrated in fig-
ure 5.2(a) where static magnetic potential is shown by the dashed line and the RF
adiabatic potential by the solid line. The RF field vector coupling the bare levels is
indicated by the arrow. In the dressed state basis, illustrated in figure 5.2(c), we see
that the uncoupled states never cross. When coupled they repel each other, forming
the double well potential. The 2D cross section of the resulting potential is plotted in
Sfigure 5.2(e). If Vrp > @Bg the RF field is resonant at two points along the x—axis.
The resonance points the uncoupled dressed states cross, and the coupling turns these
into anti-crossings basis which form a double well for the atoms (figure 5.2(d)). The
2D cross section of the resulting potential is shown in figure 5.2(f).
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detuning of the RF field with respect to the minimum of the local static field. If @ >
@Bo (supraresonant) then the shape of the trapping potential is determined largely
by the frequency of the RF field, which will be resonant with the local static field on a
shell around the static trap minimum. Along the x—axis (where the double well forms)
the RF is resonant at two points, indicated by the arrows in figure 5.2(b). In the dressed
state basis (figure 5.2(d)) the bare state eigenenergies cross at these points. The RF field
couples them so that this becomes an anti-crossing. If the atoms adiabatically follow the
dressed state potential, they will be trapped in the minima formed at this anti-crossing.
The RF field need only be strong enough to avoid spin flip loss at the trap minimum.

Alternatively @ < ““lBh—gF'Bo (subresonant), as in figure 5.2(a), in which case the shape
of the trapping potential is determined more by the strength of the coupling term than
the frequency. The bare states in this configuration do not cross, as can be seen in fig-
ure 5.2(c). However the RF field will still couple these states, pushing them apart. The
coupling is strongest nearest to resonance, so the centre of the trapping potential will be
pushed up further than the surrounding points. If the RF field is sufficiently intense, a
double well potential will also form in this configuration because of this spatially varying
coupling.

In both cases a double well potential will form along the axis of weakest coupling in
the plane of the static quadrupole field. These two cases are illustrated in figure 5.2(e)
and figure 5.2(f) respectively. This is the axis along which the RF field vector is parallel
to the quadrupole field. For subresonant RF the centre of the trapping potential is a saddle
point because the coupling term does not fall away sufficiently quickly along the y—axis
to form a central barrier. The reason is that the RF field is always perpendicular to the
local static field along this axis, so the change in coupling is only due to the change in the
detuning between the local static field and the RF field. Along the x—axis the additional
change in orientation between the RF field vector and local static field vector allows the
double well to form. In the case of supraresonant RF a barrier forms along both axes,
but the potential is lower along the x—axis because the coupling term is weaker due to the
change in the orientation of the local static field vector and so a double well will still form.
The potentials for an F' = 2 system are formed similarly and are illustrated in figure 5.3.

Note that the atoms are coupled to the RF field across the entire trapping potential
because of the non-zero z—component of the loffe-Pritchard field, which is everywhere
perpendicular to the RF field vector. Along the y—axis the local static field rotates in a
plane perpendicular to the RF field vector as we move away from the minimum of the
Ioffe-Pritchard trap and the only change in coupling is due to the change in the magnitude

of the local static field. Along the x—axis the static field rotates in the x — z plane away
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Figure 5.3: RF Adiabatic Potentials for the F = 2 System: On the left the poten-
tials with a subresonant RF field are illustrated. On the right the potentials with a
supraresonant RF field are illustrated. We trap atoms in the g = 2 state using a
subresonant RF field.

from the perpendicular, which strongly changes the coupling by introducing a significant
parallel term to the RF field vector. For our interference experiments, the minimum of the
double well is located about 2 um away from the trap centre along the x—axis, at which
point the static field has increased by almost 10% (from ~ 0.9G to ~ 0.97G) and the
angle between the local static field and the RF field has changed from 90° to ~ 69°.

In order to make a double well potential for the atoms with this configuration, the am-
plitude of the RF field must be large - in our case it is comparable to the magnitude of the
static field at the minimum of the trap. Because of this, the commonly used rotating wave
approximation to the interaction between the atoms and the dressing field breaks down.
In the following I will describe the basic theory of the interaction between an atom and
a strong RF field, and discuss analytical approximations beyond the simple rotating wave
approximation, as well as full numerical calculations of the resulting dressed potentials.

None of this theory is new, but some of it has not yet been addressed in this context.

5.2 'Theoretical Approaches

5.2.1 Dressed Atoms

The most useful starting point for describing the interaction of an atom with spin F with
an intense RF field is the dressed atom Hamiltonian, introduced by Haroche and Cohen-
Tannoudji [82] [83] [84]
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H = Hgatic + Hyieta + Hrr

(5.1
— uBg(r)-F+howa'a+ uBgyp(r,7)-F

where Bg(r) is the static magnetic field, 4 = grup the scalar magnetic dipole moment, F
is the atomic angular momentum, @ is the angular frequency of the RF field, and Brg(r,?)
is the RF field. The operators a' and « are the creation and annihilation operators of the
RF field and satisfy the usual bosonic commutation relations.

We will assume that the static magnetic field and the parameters of the RF field vary
slowly in space and time compared to the Larmor frequency of the dressed atom, so that
the atom will adiabatically follow the dressed states of the Hamiltonian. For realistic
experimental parameters this assumption will almost always be well satisfied. In this
case, we can treat the interaction of the atom and the field described in equation (5.1) on
a local point by point basis.

We can thus choose, for each point in space r, a local coordinate system in which the
static magnetic field is aligned along the z—axis so that Bs = BpZ, with By = |Bg|. The
RF field can then be decomposed into a linearly polarised component B, aligned along
the z—axis, and two circularly polarised components B, (rotating anticlockwise) and B,

(rotating clockwise) in the £ — y plane. The RF field is then written
Brr = {B4,B¢,B;}. (5.2)

Dressed Atom Hamiltonian in the Local Frame

We can write the dressed atom Hamiltonian in terms of the local reference frame of the
atom. The most useful basis states are the states |n,mp), where n labels the number of
photons in the RF field and mf is the magnetic quantum number referred to the local
z—axis Bg/|Bg|. We make the assumption that (n) = n is large and the variation around n

is small. In this basis, the dressed atom Hamiltonian is

H = uBomp + hoa'a+ _#_ (BaaTF_ + Bﬁa?FjL + BzaJ(Fz + h.c.) (5.3)

2\/n
with F = F, £ iF,. The first two terms of this Hamiltonian are diagonal. The others are all
off diagonal terms representing couplings between the bare states of the system. The inter-
action part of the Hamiltonian has been split into three terms Hgr = H. + H,+ H: the first
term, containing B,a'F_(4h.c.), will raise (lower) the number of RF photons in the field
by one and lower (raise) the atomic spin state, the term containing B.a'Fy (+h.c.) will

raise (lower) both the spin state and the number of RF photons, while the term containing
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BzaT(—f—h.c.) will raise (lower) the photon number but leave the spin state unchanged. We

will refer to these terms as the co-rotating, counter-rotating and parallel respectively.

Coupling

n+1 X A n
B P
n Y (—-—) n—1
.: Ba
n—1 4 n— 2

Figure 5.4: Levels Coupled by RF Field Components: In this figure I illustrate ex-
amples of the levels coupled by each of the three different RF field components. The
RF field is resonant with the local static field (0 = @), so the |+) levels on the right
are shifted by exactly one photon energy with respect to the |—) levels on the left.
The co-rotating component (B,) resonantly couples levels |n,—) and |n—1,+). The
counter-rotating component (B.) couples the levels |n—1,—) and |n,+) (which are
2wy off resonance) and the parallel component (B;) couples levels within one or the
other spin manifold, which are always separated by .

It is easy to describe the action of each of the interaction terms with a spin-1/2 system.
We will use the notation |n, £) for the eigenstate corresponding to n photons and spin up
(down). In the absence of interactions these terms have eigenenergies nho + hay /2,
where we have defined @y = uBy/h and we have taken p to be positive. The coupling
terms are illustrated graphically in figure 5.4 for the case that the RF field is resonant with
the (local) static magnetic field so that @ = ay. In this case the |n,+) levels are shifted in
energy by exactly one photon with respect to the |n, —) levels.

The co-rotating component (B,) is clearly the resonant (energy conserving) term of
the interaction Hamiltonian. It couples levels |n, —) with [n — 1,+). The counter-rotating
component (B.) couples levels |n—1,—) with |n,+), and the parallel component (B;)
couples levels within one manifold of states, |+). For systems of arbitrary spin these terms
play the same role, though the corresponding diagram will become more complicated.

If we introduce a detuning A = wy — @ between the RF field and the local static field,
the difference in energy of the coupled levels for each term is A, 2uBy/hi — A and @
respectively. Thus for small detunings, the co-rotating term will remain closest to reso-

nance. The counter-rotating term is always off-resonant, and the parallel term is resonant
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at ® = 0, i.e. when the RF field is just a constant addition to the static field.

Depending upon the terms that are kept in the interaction Hamiltonian, different man-
ifolds of states will be coupled by the matrix elements of the dressed state Hamiltonian.
The three interaction terms give rise to selection rules that describe which matrix elements

are coupled by each term

Amgp =0 for B,
Amp+An=0 for B, 5.4
and Amp—An=0 for B..

Rotating Wave Approximation

The rotating wave approximation consists of ignoring the far off-resonant terms in the
Hamiltonian of equation (5.3) and keeping only the co-rotating terms. The resulting
Hamiltonian can be diagonalised analytically.

The dressed Hamiltonian in the rotating wave approximation is

Hrwa = UBoF; + hiwa'a+ . (BaaTF, + h.c.) (5.5

V2n

which has eigenenergies

Erwa = mp \/(‘U,B() — ha))2 + ‘U,ng +nhow
= hinp\/ A? + Q2 4 nho
where mp = —F ... F labels the pseudo-mp states of the dressed system and I have intro-

duced the detuning A = uBy/h — @ and the Rabi frequency Q = u|B,|/h. The field is

approximately uniform across the trap, so we can drop the ni@ term from the potential.

(5.6)

The resulting RF adiabatic potentials are then

VRWA(I') = hﬁ’lp\/A(l‘)z-i-Q(l‘)z. 5.7)

It is the spatial dependence of the detuning and the coupling term that gives rise to the
double well potential described in section 5.1 above. We can think of the atom as moving
in an effective static magnetic field AZ+ Q€| with a magnitude VAZ +Q? and polar angle
given by tan(6) = —Q/A. This identification of an effective static magnetic field for the
dressed atoms leads to an alternative description of the effect of the dressing field, which

can be said to modify the g—factor of the atom, changing how it responds to the static
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field.

Recalling the adiabaticity criterion for trapping atoms in a static field (see equa-
tion (2.4)), we can also write down a semi-classical adiabatic criterion for the dressed
states, requiring that the effective field vector changes slowly compared to the effective
Larmor frequency v/A2 + Q2.

The rotating wave approximation captures all of the physics required to explain how
a double well potential is formed. However is does not give an adequate quantitative de-
scription of the potentials that we make with our atom chip. This is because we use large
amplitude RF fields so that the counter-rotating B, and parallel B, components of the RF
field make a significant contribution to the real trapping potential. Higher order expan-
sions of the eigenenergy of an atom dressed by a linearly polarised RF field (which is
what we use in our experiment) can be found in the literature and include the contribution

of these components [85] [86]. In our notation, the 4th order expansion for the potential

A Q2 302
V =m A24+Q2 (1 1-— 5.8
’”F\/ ! (+(oo+a)>( 4(w+wo)2+(w§—4w2)) o9

where I have defined ® = uB|| /2 in analogy with the definition of Q. We have also used

1S

equation (5.8) to calculate our trap potentials. The agreement near the trap centre (where
the detuning is small so that the atoms are near the resonance point) is excellent, even for
RF fields with amplitudes larger than we typically use, and much better than within the
rotating wave approximation. However, as we move away from the trap centre and the
detuning is no longer small, equation (5.8) also breaks down. A comparison for realistic

trapping potentials is made below.

5.2.2 Full Numerical Calculation

For accurate calculation of our trap potentials we need to numerically diagonalise the full
Hamiltonian of equation (5.3) at each point in space. The basis states for the numerical
calculation are the bare states of the undressed atom |mp), where mgp = —F ... F and the
RF field with n photons, i.e. |n,mp). In this basis the first two terms of equation (5.3)
are diagonal, with matrix elements mp By and niw. All the other terms are off-diagonal.
The matrix elements of the interaction terms of the Hamiltonian follow from the selection

rules given in equation (5.4)
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(n+1,mp — 1| Ha|n,mp) = Z'uWBa\/n—l— 1/ (F+me)(F—mp+1) (5.9)
(n+1,mp + 1| He |n,mz) = 2%3;\/% 1/ (F —me)(F+me+1) (5.10)
(n+ 1, mg| H, |n,mz) = ZL\/EBZ\/n—f—lmF (5.11)

plus complex conjugates. Under the assumption that (n) is large and the variation around
(n) is small' \/n+1 ~ /n. The matrix elements simplify to

B,
(n+ 1,mp — 1| Hy nymp) ~ 220 S OF £ mp)(F —mp + 1) (5.12)

2
. MB;

<n+1,mF+1|HC\n,mF)_T\/(F—mp)(F—i—mF—l—l) (5.13)
B.

(n+1,mp| Hy |n,mp) ~ “2 mr (5.14)

plus complex conjugates. When all the components of the RF field are present, this matrix
cannot be further broken down into smaller sub-system since all the states in the system
are coupled. The Hamiltonian is infinite, so numerical diagonalisation requires trunca-
tion at some number of photons. To calculate the trap potentials we truncate the matrix
at a suitable choice of n £ An around an arbitrary reference point n. Our states are then
|An,mp), with |An| < Any.,. The choice of An,,, requires a compromise between accu-
racy and available computing power. Physically, the truncation involves ignoring higher
order multiphoton transitions. We check the effects truncation numerically to make sure
that the error introduced is small. With An,,,, = 4 the errors introduced in our potentials
are at the level of a few parts per million.

We can make the numerical calculations more tractable by using a method introduced
by Majorana, who showed that a system with arbitrary angular momentum F' can be
represented by 2F spin-1/2 sub-systems [87]. In practice this means that in order to solve
the Schrodinger equation for a spin-F system, we need only solve the corresponding spin-
1/2 problem, and then write down the spin-F wavefunctions as a superposition of the
spin-1/2 terms with appropriate amplitudes. The procedure for doing so is also outlined
in a paper by Bloch and Rabi [88].

For the calculation of eigenenergies in the stretched state iy = 2, which we need to

calculate our trapping potentials, the procedure is simple. We calculate the eigenenergies

'for a typical RF field amplitude of 1 G, the average number of photons in a Poisson distributed coherent
field is (n) ~ 10?8, so this assumption is very good - see [84].
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for the spin-1/2 system and then scale these by 7y / % The calculations for the spin-1/2
system involve (2F + 1)? /4 less terms, which makes them far more tractable and allows
us to include more photons in the matrix and avoid truncation effects in our calculations.
The eigenvectors of the spin-F system similarly can be calculated following the method

outlined in [88]. The procedure can also be usefully applied to analytical calculations.

5.3 Calculating Realistic Trapping Potentials

Chip Wire Geometry
Iyc — I Cos(at ) Iqc + Iy Cos(at)
RF RF
e T
N A
) _/; ol® R: _ splitting axis
DRI
s AN
DC quadrupole field

Figure 5.5: RF Adiabatic Potential Geometry: We implement the RF adiabatic po-
tentials in our experiment using a simple two-wire geometry that gives us control over
the orientation of a linearly polarised RF field relative to the quadrupole of the static
magnetic trap. The wires used in the experiment are highlighted in figure 5.5(a). One
is 50 um wide, the other 100 um wide. Both carry I A of DC currrent to create the
static trap (see section 4.3 in chapter 4 for more details). Relative to the sketch in
figure 5.5(b) the DC current flows into the page. The RF current is added to both
wires via the circuit illustrated in figure 3.10. The RF current is run with a © phase
shift between the two wires so that the vertical components of the two RF fields add
to give a linearly polarised field as illustrated in figure 5.5(b). Because of the differ-
ent widths of the two wires, if we run the same RF current in each wire the resulting
RF field is oriented at a small angle to the vertical. The double well potential forms
along the axis of weakest coupling between the RF field and the atoms in the local
static field, which is highlighted in blue in the figure 5.5(b).

We implement the RF adiabatic potentials in our experiment based on the two wire
geometry we use for creating static magnetic potentials. The geometry is illustrated in
figure 5.5. We use the same two wires to produce both the static and RF fields. One wire
(labelled Z3) is 50 um wide and the other (labelled Z4) is 100 um wide. The centre to

centre separation of the two wires is 107.5 um. We did not design our experiment with
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this asymmetric configuration, but were left with only these two trapping wires after the
failure of the other two available trapping wires. As a result, we must be very careful
in how we calculate our RF adiabatic potentials in order to understand our interference
experiments.

We calculate our DC trapping fields using the analytic expression in equation (2.13)
for a finite-width wire and cross check our calculations using the measured radial trapping
frequencies (see section 4.3.2 of chapter 4) and known DC currents and bias field calibra-
tion. The RF field is similarly calculated using equation (2.13) with a given RF current
in the wires and phase between the current in the two wires. We calculate the resulting
RF adiabatic potential using the full numerical expression described in section 5.2.2. In
the following sections I also compare the two analytic expressions for the RF adiabatic

potentials given by equation (5.7) and equation (5.8).

2000 f
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= - mp
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Figure 5.6: RF Coupling: In our experiment the field at the minimum of the loffe-
Pritchard trap is ~ 0.9G (or ~ 630kHz). The RF field is red-detuned by 90kHz with
respect to the trap minimum (Vgr = 540kHz). The RF field amplitude is ~ 0.8 G.

In our experiment the field at the minimum of the Ioffe-Pritchard trap is ~ 0.9G (or
~ 630kHz). The RF field is red-detuned by 90kHz with respect to the trap minimum
(vgr = 540kHz). The RF field amplitude is ~ 0.8 G. The energy of the dressed states in
this configuration is illustrated in figure 5.6, where zero of the energy scale is given by
the energy of the mr = O state of the undressed Hamiltonian.

A cross section through the centre of a potential with a horizontal splitting axis and
a separation between the two minima of ~ 4 pm is illustrated in figure 5.7. For reasons
explained below, this potential must be adjusted to obtain the balanced double well that

we use in our interference experiments.
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Figure 5.7: Double Well Potential: Full numerical calculation of a typical double
well potential. Shown in the figure is a cross section through the centre of the trap
(i.e. with z=20). This is the potential that is formed with the same RF currents
running through the two wires as illustrated in figure 5.5. The splitting axis is almost
horizontal in this configuration, and the separation between the two minima is ~
4 um.

5.3.1 Accuracy of Analytical Approximations

In order to compare the different analytical approximations discussed in section 5.2 and
to highlight the role of the different polarisation components of the RF field (co-rotating,
counter-rotating and parallel), I discuss two different double well potential configurations
in the following paragraphs. The first is made with the RF red-detuned by 90kHz away
from resonance with the trap bottom, which is how we make the double well potentials
we use in our experiments. The current in each wire is adjusted so that the double well
potential is balanced (see the discussion below). In the second trap the RF frequency is
set to resonance with the trap bottom (all other parameters are kept the same) so that the

effect of detuning is made smaller.!

IWith an RF field blue-detuned with respect to the trap bottom a double well potential can be formed
with much weaker RF fields and the rotating wave approximation can give an accurate description of the
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Figure 5.8: Analytic Approximations: A comparison of the full numerical calculation
of the potential shown in figure 5.7 with the analytic approximations of equation (5.7)
and equation (5.8). In all figures the full numerical calculation is plotted with a solid
line, the rotating wave approximation of equation (5.7) is plotted with a dotted line,
and the approximation of equation (5.8) is plotted with a dashed line. On the left
is a potential made with the RF field red-detuned by 90kHz with respect to the trap
bottom (which is at 630kHz) and a field amplitude at the centre of the trap of 0.8G.
On the right is a potential made with the RF field tuned to resonance with the trap
bottom and a field amplitude at the centre of the trap of 0.45G. At the top I plot the
approximations with the minimum of each potential set to zero. This is the double
well that would be seen by the atoms. On the bottom I plot the potentials relative to
the energy of the mg = 0 bare state. We can see that the higher order approximation
correctly predicts the absolute energy shift of the potential near resonance in both
configurations. For the trap on the left, however, the approximation breaks down
away from the centre of the trap because the detuning becomes too large (see the
discussion in the main text). For the resonant trap, the detuning stays small across the
entire potential and the higher order approximation is excellent. The rotating wave
approximation underestimates the shift in the potential when the RF is subresonant.
It also fails to correctly predict the resonant potential when the amplitude of the RF
field is large, as in the figures on the right.
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In figure 5.8 I compare the full numerical calculation of the potential shown in fig-
ure 5.7 with the analytic approximations of equation (5.7) and equation (5.8). In all plots
in the figure the full numerical calculation is shown with a solid line, the rotating wave
approximation of equation (5.7) with a dotted line, and equation (5.8) with a dashed line.
On the left is a potential made with the RF field red-detuned by 90kHz with respect to the
trap bottom and field amplitude at the centre of the trap is 0.8 G. On the right is a potential
made with the RF field tuned to resonance with the trap bottom and the field amplitude at
the centre of the trap is 0.45G.

At the top I plot the approximations with the minimum of each potential set to zero.
This is the double well that would be seen by atoms trapped in the potential. On the
bottom I plot the potentials relative to the energy of the mr = 0 bare state so that we can
compare the energy shift predicted by each approximation on an absolute scale. We can
see that the higher order approximation correctly predicts the energy shift of the potential
near resonance in both configurations. For the subresonant trap, however, the approxi-
mation breaks down away from the centre of the trap because the detuning becomes too
large. The rotating wave approximation underestimates the energy shift across the entire
potential. For the resonant configuration, the detuning remains small across the entire
potential and the higher order approximation is excellent. The rotating wave approxima-
tion, however, fails when the RF field amplitude becomes too large. When the RF field is
blue-detuned with respect to the trap bottom, the agreement with the higher order approx-
imation is even better (not shown here). However for that configuration a large RF field
amplitude is in general not required to make a double well potential, and so for realistic
parameters the rotating wave approximation is still reasonable.

In figure 5.9 I show a plot of the important parameters of the double well (the trap
separation, barrier height and trap frequency) calculated numerically (in black) and within
the rotating wave approximation (in blue) and higher order approximation (in red). The
calculations are made with the RF field red-detuned with respect to the trap bottom by
90kHz just as in our experiment. The variable in the plots is the amplitude of the RF
field at the centre of the trap, which is controlled by varying the RF current in the two
wires. We can see that the higher order approximation correctly predicts the critical field
amplitude at which the two minima begin to separate, and in fact correctly predicts the
distance between the two minima across the full range of field amplitudes shown in the
plot. The rotating wave approximation underestimates the critical field required to split
the trap.

As a point of comparison, for the potentials calculated here the separation between

potential without needing to include the higher order terms of equation (5.8).
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Figure 5.9: Double Well Potential Parameters: In this plot I show the important dou-
ble well potential parameters calculated with the full numerics (in black) compared
to the rotating wave approximation (in blue) and the higher order approximation (in
red).

the trap minima in the full numerical calculation (with the red-detuned trap) is 3.9 um,
the barrier height is 10kHz and the trap frequency is 27 x 1.4kHz. In the rotating wave
approximation, the same field produces a separation of 3.3 um, a barrier height of 5.1 kHz
and a trap frequency of 27 x 1.25kHz. In the higher order approximation the numbers
are 3.7 um, 7.5kHz and 27 x 1.37kHz. Typical numbers for our interference experiments

are similar, although the trap we actually use is slightly different (see below).

5.3.2 Role of Different Polarisation Components

If we compare the expression in equation (5.8) with that in equation (5.7), we can see that
the semiclassical approximation introduces second order terms (in the amplitude of the
RF field) due to the counter-rotating and parallel components of the RF field, as well as
a first order shift in the resonance term which is due to the counter-rotating component.
It is useful to get an estimate of the role of these various components of the RF field in
forming the trapping potential. In figure 5.10 I plot the same full numerical potentials as in

figure 5.8 (the solid lines), and the contribution of the various polarisation components to
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Figure 5.10: [llustration of the role of the different polarisation components of Brr
in forming the double well potential.

the trapping potential. Again I show the potentials with the minima set to zero on the top,
and on an energy scale with the zero set by the energy of the mr = 0 bare state. The dotted
lines plot the potentials with only the co-rotating component included in the Hamiltonian.
This is the same as the rotating wave approximation. The dashed line includes the co-
rotating and counter-rotating terms, and the dot-dashed line includes the co-rotating and
parallel terms.

We can see that with the co-rotating and counter-rotating terms, the energy shift at the
centre of the trap is correctly predicted. This is to be expected because the static field at
the centre of the trap is aligned perpendicular to the RF field, so there is no parallel RF
component. Away from the centre of the trap, this component becomes more important.
At the position of the trap minima (2 um away from the centre of the trap) the angle
between the local static field and the RF field vector is about 69°, so the amplitude of
the parallel component of the RF field is about 40% of the amplitude of the perpendicular
component (which has been reduced by about 7% by the rotation). We can see that without
including the parallel component of the RF field in the calculation, the approximation
is increasingly worse away from the origin as the magnitude of the parallel component
grows. The contribution of all the RF field components must be included in order to
accurately calculate the full adiabatic potential.

Both approximations break down when the detuning becomes too large. For our trap-
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ping configuration with an RF field amplitude of ~ 0.8 G and the frequency red-detuned
by 90kHz with respect to @y, the detuning is 335kHz at the trap minimum 2 pum away
from the centre of the trap, which is more than 50% of @y, and the approximation begins
to break down. In the trap made with an RF field resonant with the trap bottom, on the
other hand, even though the detuning 2 um away from the trap centre is ~ 245kHz. The

semiclassical approximation is still good in this region.

5.3.3 Effect of Current Imbalance
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Figure 5.11: [llustration of the gradients of the RF field amplitude near the centre of
the trapping potential. The solid lines are plotted against the y-axis and the dotted
lines along the x-axis.

So far we have analysed potentials caculated with the same RF current running in
each of the two trapping wires. However although the splitting axis for the double well
produced by this configuration is nearly horizontal, it does not produce a balanced dou-
ble well for the atoms. The reason is that the RF field amplitude is not uniform across
the trapping potential because the RF field is generated by the two trapping wires. An
infinitely thin wire produces a field with a gradient d|B|/dr o< 1/r. The RF field we use
is the vector sum of the fields from two broad wires, and the gradient of the amplitude
along the y—axis is roughly proportional to d|Bgr|/dy o 1/r%7? in the vicinity of our
trap. There is also a small gradient d|Bgr|/dx around the centre of the trap.

In order to make a balanced double well potential we must rotate the trap away from

the horizontal configuration presented here by adjusting the currents in the two wires
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relative to one another. The double well potential becomes balanced when the offset
introduced by this effect is balanced by the gravitational imbalance introduced by rotating
the potential. It is thus important that we include gravity in our calculation of realistic
trapping potentials (which I do for the calculation of the full trapping potential shown in
chapter 7).

The amplitude of the RF field near the trap centre is plotted in figure 5.11(a). The
solid line is a plot of |Bgp| against y and the dashed a plot of |Bgr| against x. The origin
marks the centre of the trap in both axes. In figure 5.11(b) I plot the gradient of the RF
field amplitude along each axis. In terms of energy, the shift due to the gradient along
the y—axis is considerable. In figure 5.11(c) I re-plot the amplitude of the RF field in
energy units near the centre of the trap. There is a shift of the order of 7kHzum~! along
the y—axis and 1 kHzpum™! along the x—axis. This shifts the energy of the RF adiabatic
potential by a similar amount. The gradient along the x—axis is due to the asymmetry of
the two trapping wires. The result is that a horizontally split potential is not necessarily a

balanced double well for the atoms.
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Figure 5.12: Balanced Potential: I show here the balanced double well potential
used in our interference experiments. There is ~ 20% more RF current in Z3 (the
thinner of the two trapping wires) than Z4. The splitting axis of the double well
potential is rotated 7.5° away from the horizontal. In this trap the well separation
is 4um and the barrier height is 8.75kHz. The frequency at the trap minima is
o, ~ 27 x 1.2kHz (there is a 5% difference between the two wells).

In order to make a balanced double well, we must imbalance the RF current carried by
the two wires, which will rotate the RF field vector at the trap position. A balanced double
well in our configuration requires approximately 20% more RF current in the thinner of
the two wires (Z3), which rotates the resulting double well potential by 7.5° away from

the horizontal. The resulting potential has a separation between the two minima of 4 um
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and a barrier height of 8.75kHz. The frequency at the trap minima is @, ~ 27 x 1.2kHz
(there is a 5% difference between the two wells). This is the potential that we use for our
interference experiments. In figure 5.13 I show the effect of a 10% change in the relative

RF current carried by each wire on the resulting trapping potential.
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Figure 5.13: Effect of Imbalancing the RF Currents: I plot here the effect of changing
the difference in the RF current carried by the two trapping wires by 10%. The solid
line is a balanced potential with T0mA in each wire (giving a filed magnitude of
~ 0.81G at the centre of the trap). The dotted and dashed lines are the potentials
that come from adding SmA to one wire and subtracting the same from the other. An
imbalance of £5kHz between the two potential minima is the result.

5.3.4 Effect of A Relative Phase in the RF Current in the Two Wires
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Figure 5.14: lllustration of the effect of introducing a 10° phase offset between the

RF current carried by the two trapping wires on the important trap parameters.
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We need to take into account one further effect in calculating our RF adiabatic poten-
tials. If there is a small phase offset between the RF currents carried by the two wires,
the resulting RF field seen by the atoms will no longer be linearly polarised but ellipti-
cally polarised. The major axis of the polarisation vector will be the same, so the splitting
direction will be unchanged, but the relative contribution of the different polarisation com-

ponents of the RF field will change. Since the co-rotating component couples much more
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strongly to the atoms than the other components, this can result in a large change in the
RF adiabatic potential.

We have discovered in our experiment that a phase offset of up to 10° can arise be-
tween the two RF currents. These can be measured and their effect calculated. The effect
of a +10° phase shift is illustrated in figure 5.14. Now that we are aware of this effect
we can adjust the phase between the two wires so that the RF field is linearly polarised.
However in the experiments that I describe in the following chapter, we had not yet made
this correction. As a result an unknown phase of up to 10° may have been present between
the RF currents in the two wires. Because of this, in the data I present in chapter 7 we
cannot accurately calibrate the field produced by the wires with a given current. We can
calculate a potential assuming that the polarisation is linear (i.e. that there is no phase
offset in the RF current between the two wires), and know accurately how this potential
scales with the RF current amplitude as a control parameter. Importantly, the phase offset
discussed here does not change how the trap scales with the RF current. This means that,
with our static trap parameters and an RF field red-detuned by 90kHz with respect to the
trap bottom, a double well with a separation of 4 um will have the same barrier height and
trap frequency to within a few % regardless of the phase offset between the two wires.
The only effect of this offset is to alter the critical field amplitude at which the double well
potential begins to form (because of the increase or decrease in the relative amplitude of

the co-rotating term). We treat this as an unknown offset in our calculations.
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Chapter

Theory of Matter-Wave Interference

6.1 Matter Wave Interference

The simplest description of the interference fringes that we see in this type of experiment
is obtained by assuming that two initially well separated and independent BECs overlap
in free fall after the trapping potential is (suddenly) turned off [28]. The initial separation
of the two condensates is d. In the mean field picture, the initial wave function of this
system is a linear combination of the two BEC wave functions with an arbitrary but fixed

relative phase ¢ = ¢, — @y,

W(r) = W, (r) + ¢W,(r) where / dr W ()W, (r) ~ 0. ©.1)

Making the mean field approximation we write

Y(r) = [¥(r)[eS). (6.2)
The mean phase of the condensate is related to the velocity field of the wave function via

h
v=—VS§. (6.3)
m
In free fall the velocity field asymptotically approaches the classical velocity of the parti-

cle v=r/t. The phase of the wave function therefore has the asymptotic solution

S(r,1) — %%k-r (6.4)
where k = r/r is the wave vector of the expanding wave function, independent of the
initial form of the wave function.

If we neglect interactions between the two condensates after we turn off the trapping

potential (a good assumption if the condensates are initially well separated), the overlap-
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ping wave functions in free fall have a total density which exhibits modulations of the

form

n(r,t) = ng(r,t) +np(r,t) +2+/ng(x,t)np(r,t) cos (¢ + S, (r, 1) — Sp(r,1)). (6.5)

where n,(r,t) = [¥,(r,1)|? are the densities of the two expanding BECs.

Using equation (6.4), the relative phase of the two condensates is

1m

¢+ Sa(r,1) = Sp(r,1) = ¢ + Eﬁ(ka—kb) T
(6.6)

= —d-r.
(JH—ht r

Equation (6.5) can thus be written

n(r,t) = ng(r,t) +np(r,t) +2+/nq(r,t)np(r, ) cos (q) + —d r) (6.7)

which is the interference pattern of two overlapping plane waves with straight line fringes

orthogonal to the splitting axis with a fringe spacing

ht

= (6.8)

where
v = (r/t). Since the position of the fringes depends upon the initial relative phase ¢, we
can read-out the relative phase of the two condensates at release by analysing the density

distribution at long drop times. This is the principle of operation of the interferometer.

6.2 Two mode approximation

Consider two condensates that are completely independent, having no past connection.
In the above analysis each condensate is assigned a global phase S, ,(r). The existence
of such a phase can be explained as a form of spontaneous symmetry breaking in the
formation of each condensate. In each run of the experiment the global phase of each
condensate will be different, and the relative phase ¢ will vary randomly from —7 to +7
from shot to shot. In experiments with independently prepared BECs this is in fact what
is observed. However when a single condensate is split in two and the halves allowed
to interfere what we see is a (narrow) distribution of phases A¢ around a mean relative

phase ¢. In order to describe this distribution of phases, we have to employ a quantised
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description of the the atom field, replacing the wave functions W, ,(r,?) with the relevant
operators.
The simplest approach is a two mode theory in which each condensate represents a

single (localised) mode of the system. We can define creation operators for the two modes

at b = / dr®, ,(r)¥ (r) (6.9)

where @, ;(r) =W, ,(r)/\/Na, are the single particle states of the two modes, which
are orthogonal under the assumption d > R, the radius of the condensate. The field
operator ¥ (r) obeys the usual bosonic commutation relations and can be written in terms

of density and phase operators

¥(r) = /a(r)e?™ (6.10)

in analogy to equation (6.2). Defined in this way, the particle number and phase of each

mode are conjugate variables [28]
[A(r), ¢ (r)] = i8(r — ). (6.11)

6.2.1 Number and Phase States

In this picture, two initially independent condensates with N, and N, atoms respectively
are described by the number state (or Fock state)

N4, Np) = (a"Ne(51)Ns |0) (6.12)

1
VNN, !
where |0) represents the vacuum. In this state each atom is localised in one of the two
modes. In free fall, after a long enough fall time that the two single particle mode func-
tions (almost) completely overlap, the expectation value of the particle density n(r,#) for

this state is

(n(r,1)) = (Nay Ny, t| ¥ (0)F(1) [N, Np, ) = 1 (r, 1) + 1 (x, 1) (6.13)

which, unlike equation (6.5), has no interference term. However the ensemble average
here refers to many repetitions of the same experiment and gives us no information about
the outcome of a single phase measurement. To discuss a single shot experiment, we need

to introduce another set of many-body states called binomial states

0,N) = <aT + ef%"‘)N 0) (6.14)

1
VNI2N
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in which all of the particles are in the same single particle state (®, 4 e/?®;)/+/2 which
is a superposition of the two local mode functions. The relative phase ¢ between the
two modes is fixed, as is the total number of atoms N. However the binomial state is
not an eigenstate of the operators Na,b for the number of atoms in each mode. The mean
value of these operators acting on the binomial state is <Na,b) = N/2, but the state itself

corresponds to a linear combination of number states

9,N) =e N/2Y C(k)e? [k) (6.15)
k

where k = (N, — N,)/2 labels the number states with N, , = N /2= k and the coefficients

are

VN!

Ck) = . (6.16)
V2N(N/2+k)!(N/2 —k)!
The probability distribution |C(k)|? is binomial, hence the name of the states.
The expectation value of the particle density n(r) for the binomial state is
(n(r,1)) = (9. N,1|¥" (r)¥(r) [¢,N.1)
(6.17)

= ng(r,t) +np(r,t) +2+/n4(r,t)ny(r, ) cos <¢+—d r>

which is identical to the single shot density distribution described in equation (6.5).
Again, the ensemble average here refers to multiple repetitions of the same experiment,
so for this configuration we expect each run to pick out the same relative phase ¢. In fact,
for a pure binomial state we have (¢) = ¢ and (¢,N|d> |9, N) — ((¢,N|d|¢,N))> =0
The number state given in equation (6.12) can be written in the basis of binomial states

as

1 +7
NusNo) = o= [ " dolo.). (6.18)

This allows us to give a measurement-based interpretation of the observation of inter-
ference fringes in a single shot experiment with number states. The single shot can be
interpreted as a projective measurement in which a single binomial state is observed with
arandom phase ¢ ranging from —7 to +7. Each measurement will provide a density pro-
file given by equation (6.17), but the ensemble average over many experiments is given
by equation (6.13). The details of how an interference pattern emerges in a single shot
experiment is the subject of ongoing research. There are a number of papers discussing

how the process of measuring each atom can induce interference patterns in a many-body
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system [89] [90] [91], as well as descriptions of how interactions between the atoms can
induce interference patterns [92] [93] [94] [95]. These two mechanisms may in principle
be experimentally distinguishable [94].

For independent condensates the relative phase is random from experiment to exper-
iment. For an (ideal) coherent source (such as two condensates produced from the same
source) the relative phase will be the same in every experiment. In between the relative
phases observed in a set of experiments will have some distribution about a mean relative
phase, where the width of the distribution is a measure of the coherence of the source.
The experimental challenge is to be able to produce a coherent source by splitting a single
condensate in two. We do this by ramping up the barrier of the double well potential
slowly enough that there is no excitation of bulk oscillation modes, but fast enough that
tunneling between the two modes of the well plays no appreciable role.

A realistic splitting process can be approximately described in two steps [96]: an adia-
batic splitting period in which the change of the potential is slow compared to the relevant
energy scale of the system, and a non-adiabatic period when the adiabatic criterion breaks
down. In the first period, we can think of the system as a single BEC spread across a
double well potential with a barrier smaller than the chemical potential of the condensate.
The condensate wavefunction adiabatically follows the deformation of the potential up to
the point when the barrier increases above the BEC chemical potential. After this, tunnel-
ing between the two modes is very rapidly switched off, which is a realistic experimental
approximation because the tunneling term is exponentially dependent on the overlap of

the two mode functions.

6.2.2 Correlation Functions

The first order correlation function g(l)(f', '), where T and ¥ refer to the position of the
atoms in the double well potential, describes the degree of spatial coherence between the
two modes [97]

ba) (6.19)

and has a direct experimental meaning: it corresponds to the mean fringe contrast of the

ensemble-average interference pattern [9]. If we assume that the two modes have the
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same spatial distribution after a long drop time, then

(n(r,1)) = 2n(r,1) (1 +acos(¢ -+ %d : r)) . (6.20)

We can use this expression to extract information about the initial state of the system:
o = O for the number state and 1 for the binomial state, and in between it is a direct
measure of the spatial coherence between the two modes.

It is also useful to analyse higher order correlation functions. The interference that we
observe between the two modes of the condensate is a many-body effect. In a double slit
interferometer with single atoms each atom interferes with itself, with the relative phase
between the two possible paths that it travels set by the geometry of the problem. Two
independent single atom sources do not interfere. In a many body system, interference
terms can show up in higher order correlation functions, the classic example being the
Hanbury-Brown and Twiss experiment [98]. We can similarly look for higher order in-
terference terms to explain the appearance of interference fringes in a single experiment
with the number state described by equation (6.12). Information about the exact many-
body state of the initial system in the double well potential will be encoded in these higher
order correlation functions, and in principle we can extract information about these states
by studying the statistics of these correlations [99] [100].

The two-particle correlation function is the probability of detecting a particle at a
position r’ given that a particle has been detected at position r. If we assume that at long
drop times the wave functions describing the two single particle modes are identical up to

an initial phase factor, then for the number state the two-particle correlation function is

(Ng, Ny, t[F7 (0) 7 (2B (') ¥ (1) [Na, Np, 1) =

4 A m . (6.21)

NN — 1)|@o(r,1)[* + 2NNy | Py (1, 1)|* cos (Ed- (r—r )) .

What this equation says is that if an atom is detected at a position r, then the probability
of finding another atom at a position r’ has a spatial modulation just like the interference
pattern of equation (6.7). Again the initial random relative phase ¢ does not appear in
the ensemble average, because we cannot say where the peak of a single shot interference
pattern will form, only that if there is a maximum at a point r, then there will be another

maximum at a distance 27 (At /md) away from this point.
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6.3 Phase Spreading

We want to use the measurement of the relative phase between the two modes of the con-
densate as the read out scheme of our interferometer. The resolution of the interferometer
will then be limited by the width of the phase distribution of the many body state used to
make the measurement. This suggests that the coherent state described in equation (6.14)
is the best state to use in the interferometer. However the usefulness of this state is limited
by a process called phase spreading.

In the experiment we split a single condensate into two modes that are well separated,
so that there is no tunneling between the modes. The initial state can be expanded in
terms of number states as described in equation (6.15). Each state |k) in the expansion

will evolve with a phase factor e E(K)/%

, where the energy of the state depends on the
number of atoms in the each mode. We will assume that the the initial state has a narrow
distribution of states |k) around k = 0. The time dependence of the many-body state is

then

_EAK2
[®(1)) = e EMY Ck) exp (’Ez—;l”) k) . (6.22)
k

where Ec = 2d;/dN; is the interaction energy (or on-site energy) of the modes. Since
each component evolves in time with its own phase, the width of the initial phase dis-
tribution will increase. This is referred to as phase spreading, and is a consequence of
the interaction between atoms in each mode (since for an ideal gas Ec = 0). The time

evolution of the phase fluctuations is

Ect

2\ _ IAp2 2y [ Ect ?
(80%): = (A9%)o+ (A€ ( 52 (6.23)

where (Ak?) is the fluctuation in relative atom number, which remains fixed since there is
no tunneling between the modes. Thus a state with a well defined initial phase (A@y < 1)
will become dephased (A¢; ~ 1) in a time [28] [90] [101] [102] [103]

_h 2
 Ec Ak

In the Thomas Fermi approximation Ec = 21 /5N and if we assume Poissonian number

D (6.24)

fluctuations Ak ~ /N around k = 0, the dephasing time becomes

5hv/N
tp= ——
2u

Since U o< N2> the dephasing time is weakly dependent on the atom number (¢p o< N 1/10y,

(6.25)
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and determined largely by the geometric mean trapping frequency @. Typical experimen-
tal parameters in the double well potential are ® = 27 x 345Hz (w; =27 x 1.5kHz and
®, =27 x 18Hz), u = 27 x 2.2kHz and N = 1.5 x 10* atoms, giving tp ~ 16 ms.

6.4 Longitudinal Phase Fluctuations

As we have seen in section 4.3, we make quasi-condensates in the 3D-1D crossover range
with phase fluctuations along the length of the BEC. A BEC with a phase coherence length
ly < L (corresponding to a temperature 7" > Tj) will exhibit phase fluctuations along its
length. As a first approximation, we can think of the BEC as breaking into L/ls phase
domains, each with a random phase relative to each other. Consequently when we split
the BEC transverse to the longitudinal axis, we split L/l pairs of condensates, each with
a relative phase ¢,. The integrated interference pattern will be the incoherent sum of the
interference patterns of each of these pairs. Although this is a crude model, it leads to a
reasonable approximation for the loss of contrast in the interference pattern from a phase
fluctuating condensate [104]. The model has been developed by Demler and co-workers
- see [105] [106] [107] [108] and the review paper [109].

The condensates are aligned along the z—axis and have a length L, a phase coherence
length /y (defined in section 2.3 of chapter 2), and a separation d along the x—axis. We
will ignore the radial modes of the elongated condensate. The interference pattern of the
two overlapping condensates arises from the density-density correlation function in free
fall

(na(,0)mp(1,0)) = (JA[?) <ei%d'r+c.c.) (6.26)

where |A;|? is the mean square amplitude of the fluctuations with wavevector k = md /.
We can write the amplitude in terms of the single particle correlation function of the

condensates (assuming that the two condensates are identical)

(A2 = L / dz (ata). 6.27)

From equation (2.61) and equation (2.62) we can see that (dﬂi} decays exponentially
with distance along the z—axis with a correlation length [y. The mean square amplitude
|Ax| is then proportional to \/l¢_L This system is equivalent to //& pairs of indepen-
dent condensates, as in the simple description above. The total amplitude |Ag| is the
sum of L/ly independent vectors with length I, relative phases ¢.. The interference con-
trast is proportional to |Ag|/L, so the ratio of the fringe amplitude to the background
signal is \/W If the two condensates are phase coherent along their entire length then
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(W (z)W()) is constant and |Ay| o L. In this case the vectors all have the same phase.
We can study the noise statistics of the system by analysing shot-to-shot variations of the
fringe amplitude.

The axial phase fluctuations also affect phase spreading time of the split condensates.
In a phase fluctuating condensate, the long-range order in the initial relative phase decays
exponentially along the length of the cloud. This is a random process driven by thermal
excitation, so it will lead to fluctuation in the relative phase along the length of the con-
densate once the two modes are separated. The decay of longitudinal phase fluctuations
in 1D Bose gases is the subject of ongoing theoretical [105] [106] [110] and experimental
research [12] [11].
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Chapter 7

Matter Wave Interference

7.1 Introduction

In this chapter I present data from our first interference experiment. In section 7.2 I show
how we create a balanced double well potential for our atoms. In section 7.3 I discuss how
we analyse the data from the interference patterns that we observe. The most important
data is presented in section 7.4 where I show that we are able to split a single condensate
coherently in the double well potential, which is the pre-requisite for making a working
atom chip based interferometer. This data is the core result presented in this thesis. To
date, there are only a few groups around the world that have been able to successfully do
this. In section 7.5 I present a few observations about the interference experiments we
have run. This data is preliminary and mainly qualitative. Detailed quantitative analysis
of how to improve and control the splitting process and make a working interferometer

with this set-up is currently underway and will be the topic of future studies.

7.2 Implementing the Double Well Potential

The double well potential is formed using two trapping wires as described in section 5.3
of chapter 5. The potential is illustrated in figure 7.1. The DC currents in the circuit are
controlled by home-built current drivers as described in section 3.6 of chapter 3. We run
1 A in each of the two trapping wires, which are connected in series to a single current
driver. The RF current is connected to the wires as illustrated in figure 3.10 of the same
chapter. The RF circuit is designed so that there is a 7 phase shift between the RF current
in the wires, which is required to generate a linearly polarised RF field aligned closely to
the y—axis of the trap. The exact orientation of the RF field is adjusted by altering the
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Figure 7.1: Double Well Potential: The RF adiabatic potential that we use in our
interference experiments is illustrated here. In figure 7.1(a) I highlight the chip wires
(Z3 and Z4) that are used to generate the trapping fields. A cross-section of the ge-
ometry of the chip wires in relation to the trap is shown in figure 7.1(b). The two
wires are 50 um and 100 um wide respectively. Both carry 1 A DC current (which
runs into the page in figure 7.1(b)). The RF current in each wire is adjusted to that
the resulting double well potential is balanced, which requires approximately 20%
more RF current in Z3 than in Z4. A cross section through the resulting RF adiabatic
potential is shown in figure 7.1(d), and a slice through the centre from trap minimum
to trap minimum is shown in figure 7.1(c). The splitting axis of the double well po-
tential is rotated 7.5° away from the horizontal. The well separation is 4 um and the
barrier height is 8.75kHz. The frequency at the trap minima is @, ~ 27 x 1.2kHz.
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RF current in the two wires relative to one another until a balanced potential is formed.
Recall from the discussion in chapter 5 that in order to make it balanced we must rotate
the splitting axis of the double well potential away from the horizontal by about 7.5°. As-
suming that the field is linearly polarised, this requires an RF current of 60 mA in Z3 and
73 mA in Z4, which produces an RF field amplitude of 0.78 G at the centre of the trapping
potential.! To calculate the trapping potential, the finite width of the wires has been taken
into account for both the static and RF fields, the RF adiabatic potential calculated with
the full numerics described in chapter 5 and gravity included in the calculation.

For all the experimental data presented in section 7.3 and section 7.4, we use the
following experimental procedure. We deform the single well into the double well by
linearly ramping the amplitudes of the RF current in the two wires to their final values
over 20ms. The RF frequency is kept constant at 540kHz, which is 90kHz red-detuned
away from resonance at the minimum of the static magnetic trap. During the first part of
the amplitude ramp the single well potential is not significantly deformed. Calculations
of the trapping potential indicate that it does not exhibit two minima until the currents
have reached 60% of their final values. The two modes of the condensate do not begin
to separate until the barrier height is larger than the chemical potential of the condensate.
This point is difficult to specify since the condensate deforms along with the trap. In the
single well potential the BEC has a chemical potential of 4 = h x 27 x 3kHz. In the final
double well potential each mode has a chemical potential t; = h x 27 x 2.2kHz. Using
these numbers we estimate that the two modes begin to separate when the RF currents
have reached between 75% and 80% of their final values. We cannot yet estimate the
point at which the overlap between the two modes disappears and the deformation of the
double well potential is no longer adiabatic. These numbers suggest that the condensate
splits only at the last few ms of the amplitude ramp.

The final trap has a separation of 4 um between the two trap minima, and a barrier
height of ~ 8.75kHz. In this trap the two modes of the condensate are well separated
(with no overlap and thus no tunneling) and have begun to evolve separately. At the end
of the amplitude ramp we immediately release the atoms from the trapping potential and
allow the two modes to interfere as they overlap in free fall. Images were captured after
14.2ms of free fall.
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Figure 7.2: In-trap Images of Separated BECs: Here I show in-trap absorption
images of BECs separated by ~ 50 um in the RF adiabatic potentials using various
configurations of RF currents in the two trapping wires to control the polarisation of
the RF field. After linearly ramping the amplitude of the RF current to its final value,
we then ramp the frequency of the field up to 3.5 MHz to make these traps. The image
on the top left of the figure shows the trap split in the configuration that we employ to
make a balanced double well potential for our interference experiments. We can see
a small rotation of the splitting axis away from the horizontal in this image.

In-Trap Images of a Split Condensate

It is also possible to increase the separation between the two potential wells by sweeping
the frequency of the RF field after the amplitude ramp is complete. This allows us to sep-
arate the wells far enough that we can see the two separate condensates by imaging them
while still trapped in the double well potential. In figure 7.2 I show images in which the
condensate modes have been separated by ~ 50 um using various different configurations
of the RF field so that the axis along which the double well forms is changed. In all cases
the polarisation of the RF field is linear, and the amplitude of the field at the centre of the
trap is ~ 0.8 G. The frequency of the RF field was swept linearly to 3.5 MHz at the end of
the amplitude ramp, and the images taken with the atoms still trapped in the RF adiabatic
potentials. We can see here that by controlling the relative amplitude of the RF current
in the two wires, we can split the condensate along any axis that we wish. The image on
the top left of the figure shows the trap split in the configuration that we employ to make
a balanced double well potential for our interference experiments. The small rotation of

the splitting axis away from the horizontal is apparent in this image.

IRecall from the discussion at the end of chapter 5 that there may be a phase offset between the RF
currents in the two wires, which would introduce an offset in the current needed to make the trap. However
the other parameters of the trap are fixed by the known trap separation since they scale the same way
regardless of this offset.
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Balancing the Two Modes
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Figure 7.3: Balancing the Double Well Potential: In order to check that the splitting
process is balanced (so that an equal mean number of atoms ends up in each con-
densate mode) we first form the double well potential, then suddenly switch off the
RF field, keeping the static magnetic trap on. This projects the atoms onto the bare
mp states. The mp = —1 and mp = —2 atoms are rapidly expelled from the trap and
are not detected. The mp = 0 atoms fall freely and can be seen at the bottom of the
array of clouds in the figure. The mg = 1 and mg = 2 atoms are accelerated towards
the centre of the trap because the projection occurs 2 um away from the centre of
the static magnetic trap. 400 us later the static trap is also switched off. The clouds
ballistically cross and separate far enough in free fall that they can be optically re-
solved. We then count the number of atoms in the various clouds and adjust the
splitting potential until there are equal numbers of atoms in the left and right modes.

We would like to split our condensate equally into the two modes in order to max-
imise the visibility of the interference fringes we observe in our experiment. We empiri-
cally check that we split the condensate equally using a procedure described in Thorsten
Schumm’s thesis [23]. We cannot optically resolve the two modes of the BEC in the
double well potential that we use for our interference experiments. In order to monitor
that the splitting is balanced we therefore first split the BEC in the RF adiabatic potential,
then keeping the static magnetic trap turned on, we rapidly switch off the RF field. This
projects the atoms onto the mf states of the bare trapping potential. Atoms projected onto
mp = —1 and mg = —2 atoms are rapidly expelled from the trap and are not detected,
while atoms projected onto myr = 0 fall out of the trap. That leaves the atoms projected
onto the low field seeking mr = 1 and mr = 2 states. Since the projection occurs 2 pm
away from the centre of the static magnetic trap, these atoms are accelerated towards the
centre of the trap. The two different mp states feel a differing acceleration during this
period. The static magnetic trap is also rapidly turned of ~ 400 us later. The clouds bal-
listically cross and move apart in free fall sufficiently far that we can optically resolve
the difference components. A typical image from this balancing procedure is shown in
figure 7.3. We can see atoms in both the mr = 1 and mp = 2 states originating from each

of the two condensate modes. By counting the number of atoms that come from each
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mode (ignoring the atoms in the mr = O state that come from both modes) we can check
whether the splitting was balanced. We then adjust the splitting parameters as necessary
to get the same number of atoms in each mode.

Once the two modes are balanced using this procedure, we return to a small splitting
of 3—4um and are able to observe interference fringes of the overlapping condensate
modes with good visibility. To run the interference experiment we then simply release the
condensate from the double well potential, ensuring that all the trapping fields are turned
off simultaneously. We allow the condensate modes to expand and overlap in free fall
and image the resulting cloud after 12-15ms time of flight. The fall time is chosen so
that the wavelength of the interference fringes is as long as possible, but there is also a
high enough optical density to make high contrast images of the interference pattern. The
rapid radial expansion of the condensate after the trap is released means that at longer
drop times than ~ 15ms the density of the cloud is too low to make good absorption

images of the interference pattern.

7.3 Data Analysis

7.3.1 Extracting Images

(a) Raw Image (b) Filtered Image

Figure 7.4: Interference.

Data from a typical interference experiment is shown in figure 7.4(a). The BEC inter-
ference pattern is superimposed on a noisy background of fringes caused by diffraction
of the imaging laser and etalon effects in the imaging set up. These fringes are clearly
distinguishable from the interference pattern of the BEC. In the Fourier spectrum of a
slice through the centre of the BEC (see figure 7.6(c) below), we can clearly separate

the imaging noise from the peak at the wavelength of the BEC interference pattern. This
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allows us to filter the image without losing information about the interference pattern. A
typical filtered image is shown in figure 7.4(b).
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Figure 7.5: Fourier filtering of an interference pattern. The unfiltered line density is
shown at the top left, and the filtered line density at the top right. The position and
visibility of the interference patten is not affected by the filtering. The gaussian enve-
lope is shown at the bottom left with both the imaging noise and density modulation
removed. The density modulation is shown at the bottom right.

The filter cuts out frequency components in the region between the DC and fringe
frequency peaks that can be clearly seen in the Fourier spectrum shown in figure 7.6(c).
Figure 7.5 illustrates the effect of the filtering. On the top left of the figure the linear
number density extracted from a slice through the centre of the interference pattern is
plotted (see below). The filtered line density that we use for our fitting routine is plotted
on the top right. The gaussian envelop can be extracted from the image by filtering all
the high frequency components, which leaves the line density shown in the bottom left
plot. Alternatively, if we filter out the gaussian envelope and the background noise, we
can clearly see the modulation period of the interference pattern, shown in the plot on the

bottom right.

7.3.2 Density Modulation

From an image we extract information about the visibility, wavelength and phase of the
interference pattern. The analysis procedure is illustrated in figure 7.6. We first extract a
line density from the filtered image by integrating over a a slice through the centre of the

interference pattern. The integration is over a region yo %+ 0,/2, where the centre y, and
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Figure 7.6: Fringe Fitting: We first extract a line density from the filtered image by
integrating over a a slice through the centre of the interference pattern, indicated
by the red lines in figure 7.6(a). We fit a modulated gaussian (equation (7.1)) to the
resulting line density (figure 7.6(b)) to extract the fringe amplitude d, wavelength A
and phase ¢. The same information can also be extracted from a Fourier spectrum
of the interference pattern, illustrated in figure 7.6(c). The interference pattern spec-
trum in blue, and the spectrum from a background slice integrated over a region of
the same size immediately above the interference pattern in red, which is indicative
of the imaging noise.

width o, of the slices are determined by a gaussian fit to the density distribution in the
direction perpendicular to the interference fringes. A typical region is outlined by the red
lines in figure 7.6(a).

We then fit a modulated gaussian to the resulting line density

f(x) =Aexp {—("_—XO)Z} <1+dcos {¢+2ﬂc]>. (7.1)

202 A
The fit returns the wavelength A and visibility d of the density modulation, where d is
measured as a fraction of the amplitude A of the gaussian envelope. The visibility of the
integrated line density is the same as the fringe amplitude defined in equation (6.20) up
to a normalisation factor given by the total number of atoms in the region over which we
integrate to get the line density.

We cannot fix the absolute phase of an interference pattern without a well defined
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reference for zero relative phase between the two modes of the condensate. However,
since any offset is the same for all interferograms in a given data set, we can still extract
useful information about the distribution of relative phases without knowing the absolute
phase between the components. A possible procedure for establishing a phase reference
empirically (for a given data set) is outlined below.

A typical line density and fit are shown in figure 7.6(b). Between 5 and 10 modulations
are visible in a typical line density. Our imaging resolution limits the fringe visibility
to a maximum possible value of about 40%. We typically observe a visibility between
20-25%, which is sufficient to accurately fix the wavelength and phase of the density
modulation. We can typically find the wavelength of each interference pattern to within
1%, the visibility to within 5% and the phase to within 20 mRad.

08

0.6

Density (a.u.)

04F

0.2

0 20 40 60 80 100
Position (pixel)

Figure 7.7: Effect of filtering the image. The unfiltered line density is shown in red,
the filtered line density in blue. The filtering slightly improves the visibility with-
out shift the position of the fringes. The fit to the gaussian envelope is significantly
improved by removing long wavelength imaging noise.

This fitting procedure is much more robust when we filter the image before extracting
the line density. The reason is that long wavelength imaging noise interferes with fitting
the gaussian envelope. In figure 7.7 I show the filtered and unfiltered data from a typical
slice. In the filtered data the fringe visibility is slightly improved, but the position of the
fringes (and thus the phase extracted) is unchanged.

We can extract the same information from a Fourier spectrum of the interference pat-
tern. A typical spectrum is shown in figure 7.6(c). The unfiltered spectrum is shown in
blue, and the filtered spectrum of the image in figure 7.4(b) is shown overlapping this in
red. We extract the visibility, wavelength and phase from the unfiltered Fourier spectrum
directly, which we can compare to the same quantities extracted from the fitting routine
described above.

The wavelength of the interference pattern corresponds to the wavenumber of the peak

indicated in figure 7.6(c). The absolute value of the Fourier spectrum at this wavenumber
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is identical to the fringe amplitude defined in equation (6.20). The phase of the interfer-
ence pattern is the phase of the (complex) Fourier coefficient at this wavenumber.

The mathematics behind extracting information from the Fourier spectrum is straight-
forward and readily extended to two dimensions [111] [112] [113] [92] [114]. We assume

that the interference pattern has the form

I(r) = a(r) (1 +dcos (¢ + ko 1)) (7.2)

where Ky is referred to a the carrier frequency (in our case the relative velocity kg = hr/md
between the two overlapping wave functions), ¢ is the relative phase we want to know,

and the envelope a(r) is a gaussian. The Fourier transform of equation (7.2) is given by

F(k) =A(k)+C(k—kg)+C*(k+Kkg) (7.3)

where C(k) is a gaussian envelope in k—space. The C(k) components are displaced
by +k¢ around the DC component, and so can be clearly distinguished in the Fourier
spectrum, as we see in figure 7.6(c).

The Fourier transform method is significantly faster to implement than fitting a mod-
ulated gaussian to the line density and involves fewer free parameters. However some
care must be taken in identifying the carrier frequency kg, particularly in an experiment
in which the fringe spacing is deliberately altered. In general the peak of the gaussian
envelope C(k) will not coincide precisely with a wavevector represented by a pixel in the
discrete Fourier transform (DFT). This introduces an error in assigning a phase based on
the peak of the DFT spectrum. If the phase in the DFT winds sufficiently slowly from
pixel to pixel that we can unwrap the phase across the spectrum of interest we can in
principle correct for this error. In general this is not possible with our data. However
when we compare the relative phases extracted from a set of interferograms that all have
the same wavelength (and thus carrier frequency), the error introduced by the discretisa-
tion of the DFT is the same for each data point. We can thus confidently use the DFT to
analyse the phase distribution of a data set provided that the wavelength stays fixed. An
example is provided in section 7.4 below comparing the two methods of data analysis. In
experiments where the wavelength is changing we prefer to fit the modulated gaussian to
the line density.

If the background noise has a significant contribution to the Fourier spectrum at the
carrier frequency kg this will also introduce an error in the estimation of the phase and vis-
ibility of the interference pattern. We have analysed the spectrum of background imaging
noise in the region where we image the interference pattern. A typical spectrum is shown

in figure 7.6(c). The amplitude of the background spectrum at the carrier frequency is typ-
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ically ~ 5% of the peak corresponding to the interference fringes. The maximum phase
error this component can introduce is < 5% (if the two complex Fourier components are

perpendicular to one another in the complex plane, the phase error is maximal).

7.3.3 Circular Statistics

Since the relative phase ¢ that we measure has a periodicity of 27, we cannot use stan-
dard definitions of the mean and standard deviation to analyse our data. Instead we
use the equivalent definitions developed for analysing directional (or circular) statis-
tics [115] [116] [117] [118].

We measure a set of N phases ¢ each represented as a point on a unit circle. From

this set of observations we can calculate the phasor that represents the sample mean

6 _ Ly i
l —— 110/9
re N l;l ek, (7.4)
where
_ arctan (2 if ¢>0
r=v+82 and §= (‘_) = (7.5)
arctan (%) +7 if ¢<0
with
§—lZsin(¢ ) and E—lZcos(Q) ) (7.6)
CNETTE T N& o '

The mean length r is a measure of the concentration of points around ¢. If the points
are tightly clustered around ¢ then r ~ 1, and if they are widely dispersed r ~ 0. We can
calculate r from the mean of the sines and cosines. We can then define the sample circular

standard deviation in terms of »

o =/—2In(r), (7.7)

where o € [0,00).

Circular Distributions

We would then like to draw inferences from the data. Hypothesis testing requires a model

of the distribution of phases from which we took our measurements. The equivalent of

122



Matter Wave Interference 7.3 Data Analysis

the Gaussian (normal) distribution in circular statistics is the von Mises distribution’.

eRcos(0—it)
277:]()(1() ’

where Iy(x) is the zeroth order modified Bessel function of the first kind and ¢ € [0,2x].

f(Olu,x) = (7.8)

The parameter u is the mean of the distribution, and kK concentration of points around p.
In the limit of large K, the von Mises distribution becomes the usual normal distribution

with 6% =~ 1/k, and in the limit of small k it becomes a uniform distribution:

. 1 (¢ —u)?
lim £(6]14,1) = U (9). (7.10)

Unless the number of sample points is very large, the von Mises and wrapped normal
distributions are in practice indistinguishable and either may be chosen for the purposes
of statistical hypothesis testing. The von Mises distribution is typically used because it is

easier to give simple expressions for confidence intervals and hypothesis tests.

Hypothesis Testing

For a given set of data we would like to know if the mean phase we measure is statistically
significant. One way to do this is to test the null hypothesis that we have drawn our data
from a uniformly distributed set of phases. The standard test of uniformity is called the
Rayleigh test. We calculate the probability P that a set of N data points drawn from a

uniform distribution produces a mean vector longer than r [118]

P =exp {\/1+4N+4N2(1—r2)—(1+2N) : (7.11)

For a data set of N sample points, we calculate the length of the mean phasor 7 from
equation (7.5) and compare this to a radius r calculated from equation (7.11) for a chosen
confidence interval. If 7 > r, then we can reject the null hypothesis that the underlying
distribution was uniformly distributed with a confidence 1 — P.

It is also useful to be able to calculate confidence intervals ¢ & 5@, around the mea-

'A commonly used alternative is the wrapped normal distribution

R~ (¢ —u—27k)>
f(9lp,0) = 67\/2—%](2 exp (—262> ;

—=—o0

where ¢ = /—2In(r) is the circular standard deviation and y the mean.
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sured mean phase ¢. In general, this requires making an assumption about the underlying
distribution of phases (although model-independent techniques exist). Relatively simple
expressions for confidence intervals exist assuming that the phases follow the von Mises
distribution. When the data are tightly clustered the von Mises distribution can be approx-
imated as a normal distribution with mean u and variance 1/x. For less clustered data we

can use instead the following expressions [116]

arccos {%\/<1—(1—r2)ezé/N>J if r>09
50q ~ (7.12)

arccos (% 2(%4];[vr—iz%f%)) if <09 and r> %‘%\‘,
where Z is the quantile of the X12 distribution corresponding to ¢¢. These approximations
are derived under the assumption that k¥ is unknown but small and are reasonable for
N > 8. For our typical data sets we can estimate the mean phase to within 5% (the 95%
confidence interval assuming an underlying von Mises distribution), which is significantly
smaller than the width of the phase distribution itself.

Various alternative statistical tests based on the von Mises distribution also exist, in-
cluding tests for the concentration parameter K of the fit, and tests for distinguishing the
phase difference of two data sets [115]. For this reason the von Mises distribution is

typically used when making statistical inferences from circular data.

7.3.4 Finite Imaging Resolution

density, (a.u.)

-100 -50 0 50 100 Hm

Figure 7.8: Reduced fringe visibility due to the finite resolution of the imaging sys-
tem. An interference pattern with a wavelength of 18 um has its visibility reduced by
about 40% when we take the resolution of the imaging system into account.

The visibility of the fringes we observe is considerably reduced by the finite resolution
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of the imaging system. We can account for this by convolving the density distribution with

a Gaussian kernel!

1 —x?
K(x) = s exp ( 532 ) (7.13)

where s is the imaging resolution. An ideal sinusoid convolved with a period A = 27 /k
convolved with K(x) has a reduced visibility 7 = exp(—k>s?>/2) [119]. With our ex-
perimental parameters, A ~ 20 um and our imaging resolution is s ~ 7 um, the expected
visibility of an interference pattern with 100% visibility is about 0.4 - see figure 7.8. Note
also that a misalignment of the imaging axis with respect to the fringes will also degrade
the maximum possible fringe visibility, but this is not a significant effect in the experi-

ments described here.

7.4 Coherent Splitting

One of the early experiments performed with a Bose-Einstein condensate involved the
observation of interference fringes when the two separate components of a condensate
split in a double well potential were allowed to overlap in free fall [1]. From shot to shot,
the relative phase of the two modes was observed to be random. It was not until much later
that a reproducible relative phase from the two components of a single split condensate
was observed, originally with optical potentials [2] [3] and then subsequently with RF
adiabatic potentials on an atom chip [5]. Achieving this step, which is a prerequisite for

building an atom chip based BEC interferometer, is the main result reported in this thesis.

Phase Distribution

To test for phase coherence we repeat the experiment described above in section 7.2 many
times, and analyse the resulting interference patterns. The following data set was draw
from 103 repetitions of the same experimental sequence.

The polar plot in figure 7.9(a) shows the phases and visibilities extracted from each
of the interference patterns. The distribution of phases is clearly not uniform. The phases
are peaked around a mean phase ¢y with a width of A¢p = 40°. The Rayleigh test yields
a negligible probability that the underlying distribution of phases was uniform (~ 2 x
10733). The average fringe visibility of the data set was d = 0.2140.03. The wavelength
of the density modulation was 5.15£0.1 pixels, which corresponds to 17.5 +0.3 um. The

The Gaussian kernel is a reasonable approximation to the central peak of an Airy diffraction pattern
and far more tractable for analytical calculations.
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Figure 7.9: Distribution of relative phases from 103 repetitions of the same exper-
iment. Raw data above, data corrected for a slow linear phase drift below. The
fringe visibility is plotted on the radial axis. In figure 7.9(b) the phase spread of the
raw data is A9 = 45°. In figure 7.9(e) the phase spread of the corrected data it is
A¢ = 12°. In both cases it is clearly distinguishable from a random phase. The his-
tograms on the right hand side are displayed with a fit to the von Mises distribution
with a 95% confidence interval. The measured phase spread is derived according to
equation (7.7). The concentration parameter K of the fit to the von Mises distribution
gives widths 6 = 1/\/k of 6 = 42° and 6 = 14.5° for the two histograms.

errors here correspond to the standard deviation of the distribution over the data set, not
the standard deviation of the mean.

The data was collected over a period of just under 2.5 hours. In figure 7.10(a) I re-
plot the same data colour coded in five sets, each of which represents about half an hour
of data. There is a clear shift in the mean phase over time. In figure 7.10(b) the phase
data is plotted against time. The drift of the mean phase over time is approximately
0.26mRads~!. Correcting for this drift in the mean phase, I re-plot the same data set in
figure 7.9(d). The width of this distribution is 12° (~ 200mRad), which is much larger
than the uncertainty of a single measurement, and compares favourably to data from sim-
ilar experiments [5] [120]. In contrast, the observed spread of the other parameters is
consistent with the uncertainty of a single measurement. This shows that the phase of
the interfering condensate is fluctuating from shot to shot. If we assume that the two
modes have been separated for a few ms before the trap was released, then the width

of the observed distribution can be explained by phase spreading due to number fluctua-
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Figure 7.10: Slow phase drift over the course of the experiment.

tions according to equation (6.23) (the distribution spreads by ~ 100mRadms~! for our
experimental parameters p = 27 x 2.2kHz and N = 1.5 x 10* atoms).
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Figure 7.11: Slow drift of the centre of the gaussian envelope over the course of the
experiment.

The linear phase drift can be almost entirely explained by a corresponding slow drift
in the centre of the gaussian envelope over the course of the experiment, which is shown
in figure 7.11(c). The centre shifts 1.75 pixels (4.4 um) over the course of the experiment.
At a wavelength of 5.15 pixels (17.5 um) this corresponds to a total phase shift of ~ 2.1
radians, compared to the measured total phase shift of ~ 2.3 radians. The corresponding
drift in the wavelength and visibility of the interference fringes is negligible over the same
period.

The phase of the fringes is supposed to be fixed by the geometry of the double well
potential, independent of the cloud position in free fall. The correlation between phase
and cloud centre suggests either that the imaging beam is slowly drifting due to a pointing
instability in the optical path over the course of the experiment, or that the drift of the
cloud centre is correlated with a change in the position of the double well potential. A
shift of the trap position of 4.4 um relative to the chip wires seems very unlikely (requiring
a change in the lab field of close to 1 G, which is much larger than anything we measure
near the experiment).

If we use the cloud centre as a reference point for the relative phase between the two
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modes, then the shot to shot variation of phases is much greater than presented here.
The reason is that the centres of the gaussian fits to the modulated density distributions
have a standard deviation of ~ 1.35pixels, which at a fringe wavelength of 5.15pixels

corresponds to an variation of the relative phase of ~ /2 Rad.

Comparison of Fitting Procedures

3x
slope: 1

2 offset: 1.01 radian
>

=

Z

- 2T

2

F

s

3

=

5

2

<

=

=" T

5]

2

k|

]

~

0 ‘ ‘
0 T 2 3n

Relative Phase ¢: Fringe Fit

Figure 7.12: Comparison of Fringe Fit and Fourier Analysis.

The data I have presented so far has been taken from fitting the modulated gaussian
of equation (7.1) to the data. It is worthwhile comparing to this the results of the Fourier
analysis routine. In figure 7.12 I plot the relative phases extracted from the two analysis
methods against one another. There is an arbitrary offset of ~ 1 Rad between the two sets
of phase measurements, but they align neatly on a line of slope one, as seen in the fig-
ure. The phase distribution extracted from the fringe fit has a slightly smaller width than
that extracted from the fourier analysis (A¢ = 37° compared to A¢ = 41°), and the mean
visibility is slightly reduced (0.20 £ 0.03 compared to 0.21 +0.03 ). The wavelengths
extracted are nearly identical (5.154-0.07 compared to 5.16 +=0.09 ). This strongly sug-
gest that the two methods are interchangeable. Fourier analysis has the advantage of
being much faster, and does not require filtering the image before applying the analysis
routine. Obviously the experiment would be improved by reducing the intensity of the
background fringes in the camera image. It is therefore preferable to use the Fourier anal-
ysis technique unless the wavelength of the interference pattern corresponds to a peak in
the imaging noise, or cannot be clearly distinguished from the low frequency components

of the gaussian envelope, in which case the procedure breaks down.
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Figure 7.13: Ensemble average of 103 repetitions of the same experiment. The fit to
the interference pattern has a visibility of 0.21(0), which, given the finite imaging res-
olution, is consistent with a first order spatial coherence (defined in equation (6.19))

of ~0.5.

The coherence of the splitting procedure is also revealed in the ensemble average of
the data set. In figure 7.13 I show the average density of the 103 experiments, and the
corresponding line density and Fourier spectrum. The incoherent imaging noise has aver-
aged away, and the sideband in the Fourier spectrum at the fringe frequency is prominent.
The fitted wavelength is 5.17 £ 0.04 pixels, which is slightly longer than the individual
images. The visibility is 0.21 £0.01, which is statistically indistinguishable from the
mean visibility of the individual fringe patterns in the ensemble (0.20 £-0.03).

The fringe visibility of the ensemble averaged density distribution is a measure of the
first order spatial coherence of the system, defined in equation (6.19) (see equation (6.20)).
An ensemble averaged fringe visibility of 1 corresponds to a fixed relative phase between
the two modes of the double well. Given the finite resolution of our imaging system,
which limits us to observing a maximum fringe visibility of ~ 0.45 at at wavelength of
17.5 um, the measured visibility is consistent with & > 0.45. In our experiment the mea-
sured coherence is limited by the presence of longitudinal phase fluctuations which lead
to diffusion of the mean relative phase along the length of the condensate after the two
modes are separated and reduce the average fringe visibility of a single shot of the exper-
iment (see section 7.5.3 below). We have also seen evidence that the splitting process can
excite axial oscillation modes of the system, which again leads to a loss of fringe visibil-
ity. Thermal fluctuations of the finite temperature system also lead to a loss of coherence.

These effects are currently under further investigation.

7.5 Some observations about BEC interference

We have established that the splitting procedure described in section 7.2 is phase coherent,

and that we can read out the relative phase between the two modes of the condensate by
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analysing the interference pattern of the overlapping clouds in free fall. We are thus at the
point where we can try to make a measurement using our BEC interferometer. In addition,
we are studying the decoherence of the relative phase in the interferometer once the two
modes are well separated, both from longitudinal phase fluctuations and phase spreading
due to on-site interactions. We are also studying how to control these effects by varying
the parameters of the splitting process such as the characteristic time take to split the two
modes. These topics will be the subject of future reports.

To finish this thesis, I would like to present a few qualitative observation drawn from

our early interference experiments.

7.5.1 The Effect of Interactions

So far we have assumed that the two modes of the condensate act as point sources for
the observed interference pattern, and have ignored the contribution of interactions in the
free fall expansion of the condensate. For an elongated BEC the radial expansion scales
as /1+ 1, where T = @, ¢. The initial expansion is dominated by the conversion of the
release energy (largely the interaction energy 2p1 /5 of the BEC) into kinetic energy. For
our ~ 2kHz radial trap frequency, this initial acceleration is over within the first 1 ms. It
will show up as a small shift in the wavevector of the interfering condensates.

We have also implicitly assumed that the size of the two condensate modes is small
compared to their separation. In our experiment the radial wave function is ~ 0.5 um in
the double well potential, and the separation is ~ 3.75 um, so this assumption may not be
fully justified. In this case we should take into account the finite size of the two modes,
which will modify the fringe spacing of the interference pattern given by equation (6.8).
For extended sources, we should average over the density distribution of the two modes
so that

ht 1
A= — <(_1> (7.14)
where
I n(ra)n(ry)
<E>_/ dry drp = = (7.15)

In the original BEC interference experiment of Andrews et al. [1] the interference fringes
were found to be inversely proportional not to d but to \/Wr) (via numerical extrapolation
- see also the numerical studies of this experiment in [119] [121] [122]). Schumm et al. [5]
also reported a deviation in the fringe spacing of equation (6.8) due to interactions. We

believe that the difference between (1/d) and 1/ (d) explains the observations.
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An effect that we observe in our experiment (see below) is the appearance of a thick
central fringe when the initial wave functions have a significant overlap [119]. Since the
initial wave functions have a significant overlap, this fringe appears at zero relative phase,
which means that we can use an images like that in figure 7.16(a) to provide a refer-
ence point for the relative phase which we otherwise would not have in our experiment
(we cannot resolve the two modes of the double well in trap with our imaging system).
The width of the central fringe is also a measure of the overlap of the condensate wave
functions [123]. For strong interactions, the nonlinear term in the GPE can also broaden
each fringe (while keeping the same fringe spacing) leading to a loss of contrast in an

experiment with finite imaging resolution [124].
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Figure 7.14: 1D GPE calculations of ground states and interference fringes for re-
alistic double well potentials.

We see some of these effects in our experiments when we vary the separation between
the minima of the double well potential. The simplest control parameter we can vary
in making a double well potential is the RF current, which changes the magnitude of
the RF field and thus the distance separating the two wells. The expected behaviour
for an ideal interference experiment is shown in figure 7.14. When the trap separation
is small compared to the size of the condensate wavefunction and there is still a large
overlap between the two modes of the condensate, the interference pattern has a single
broad central peak with small side lobes. As the separation increases, the full interference
pattern becomes visible, and the wavelength decreases in proportion to the mean inverse
separation between the two modes ().

When we run this experiment, we do indeed see the wavelength of the interference
pattern decrease as we increase the RF current in the wires. The results are plotted in

figure 7.15. Below a critical point, the two modes of the double well potential are not
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Figure 7.15: Fringe wavelength vs. RF current.

well separated, and we see a single broad interference fringe with small side lobes as in
the interference pattern shown in figure 7.16(a) which corresponds to the point labelled a)
in figure 7.15. The wavelength of the fringe fit (30 pm) diverges because the interference
pattern is no longer well described by equation (7.1). Above this current the wavelength
decreases monotonically from 16.9 um to 13.8 um as we increase the current. Figure 7.16
shows the interference patterns corresponding to points a), b) and c¢) in figure 7.15. At
the time of writing we have not been able to calibrate the RF current with a measured
trap separation to make a quantitative study of the scaling of the wavelength (due to an
unknown phase offset between the current in the two RF wires, discussed in section 5.3 of
chapter 5). If we assume that the spacing is given by A = % (é> the measured interference
patterns in this data set correspond to separations ranging from 2.15 um for point a), when
the two modes are not well separated, up to 4.75 um.

Note that the central peak in figure 7.16(a) provides a reference for zero relative phase
between the two modes of the condensate. We can potentially use this point to calibrate
future phase measurements, whereas in the experiments described above, the mean phase
extracted from the data set had an arbitrary offset determined by the choice of the inte-
gration region for the interference pattern. In figure 7.16(a) and figure 7.16(a) the fringe
pattern has shifted due to a relative phase winding between the two condensate modes in

the short time after they were fully separated and before the trap was turned off.
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Figure 7.16: Fringe wavelength and phase vs. RF current.
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Figure 7.17: Phase drift and spreading plotted against the amplitude of the RF cur-
rent used to make the double well potential. A larger current corresponds to a greater
final separation between the two traps, and a long time during which the two modes
of the condensate have been well separated. We thus see a shift int he mean relative
phase due to an imbalance in the trap potential, and a spreading of the relative phase
distribution between the two modes which is due to number fluctuations in the split
condensate.
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In the data shown in figure 7.15 the only variable was the amplitude of the final RF
current. The RF frequency, and the BEC and static magnetic trap parameters were the
same for each experiment, so the two modes of the condensate separated (in all experi-
ments) when the current reaches some critical amplitude (note that this is not the point
when the double well starts to form, but the point when the adiabatic criterion for split-
ting breaks down). However the period over which the current was ramped up also stayed
fixed, so that the speed of each linear ramp changed. As a result, the time at which the
condensate modes separated is different for each of the experiments. In an experiment
with a faster ramp (larger final current) the condensate has spent more time in the double
well after separation than in an experiment with a slower ramp. We therefore expect to
see a growth of the phase spread generated by the spread of number difference.

In figure 7.17 I plot the mean relative phases extracted from this data set, relative to
the centre of the broad peak in figure 7.16(a). The error bars show the spread of phases
around the mean. We see that indeed the spread of relative phases increases once the two
components of the condensate are well separated. Since the two modes separate towards
the end of the 20ms linear amplitude ramp, this indicates that the phase spreading time
in this experiment is of the order of 10ms, consistent with the estimate of ~ 15ms we
calculated using in equation (6.24). In this data the mean relative phase also evolves
as the trap as further separated, indicating that the double well potential was slightly
asymmetric.

Note also that the visibility of the fringes shown in figure 7.16 initially increases as
the two components become well separated, and then drops as the modes become further
separated. This is due to the finite imaging resolution of our system, which washes out

visibilty of the fringes at shorter wavelengths.

7.5.2 Variation of Condensate Size

The effect of interactions on the interference pattern should show up if we vary the size of
the condensate, keeping the parameters of the double well potential fixed. In figure 7.19
I plot the wavelength and visibility of the interference pattern against the end frequency
of the evaporation ramp. For comparison the interference patterns of each data point are
shown in figure 7.18 along with images of the corresponding condensates released from
the static magnetic trap. We can see that as the condensate size is reduced the visibility
of the interference fringes increases. The number of atoms in the smallest condensate is
approximately N ~ 8 x 103 and in the largest N ~ 23 x 103.

We speculate that the increased visibility is due to a decrease in the amplitude of
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Figure 7.18: Fringe wavelength vs. condensate size. In this data we kept the pa-
rameters of the double well constant and changed the size of the condensate by evap-
orating further in the static magnetic trap before forming the double well. We see
an increase in fringe visibility as the condensate becomes smaller. The number of
atoms in the smallest condensate is approximately N ~ 8 x 103 and in the largest
N ~ 23 x 103. We speculate that the increased visibility is due to a decrease in the
amplitude of longitudinal phase fluctuations in the condensate as we reduce the size

and temperature.

Fringe Visibility Vs. End Frequency of Evaporation Ramp

Fringe Wavelength Vs. End Frequency of Evaporation Ramp

55
02 %
sk ¢ }
- ; i
g
]
t 2
0.1+ =
; 45t
4
o. . . . 4 . . .
645 650 655 660 665 645 650 655 660 665

vgr final (kHz)

vrr final (kHz)

Figure 7.19: Fringe visibility and wavelength plotted against the end frequency of
the evaporation ramp for the data presented in figure 7.18.
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longitudinal phase fluctuations in the condensate as we reduce the size and temperature,
similar to what has been observed by Jo et al. [104]. There is also a hint that the wave-
length of the interference pattern decreases as the condensate becomes smaller (and the
mean inverse separation between the two modes larger), a correction due to the finite size
of the initial condensate modes in the double well potential. We have a similar shift in

two different data sets. The shift in both cases is small, but we are attempting to study
this in more detail.

7.5.3 Longitudinal Phase Fluctuations

In the interference data I have presented so far, we chose trap parameters so as to avoid
significant phase variation along the length of our condensate. However, we have also per-
formed interference experiments with the much more elongated BEC that was described at
the end of chapter 4. This BEC had a larger radial trapping frequency (0w, =27 x 2.3kHz)
and smaller axial trapping frequency (@, = 27 x 6.5Hz). The resulting aspect ratio
is about 350. These condensates typically had ~ 3 x 10* atoms, a chemical potential
U ~ h x4kHz and a phase coherence length of 3.5 um, which is much less than their
length of 110 um, breaking them up into many more phase domains (about 30) than our
standard BEC (as a point of comparison, recall that the length of our usual condensate

is 41 pm and the phase coherence length ~ 23 um, giving only two longitudinal phase
domains on average).

20 40 60 80 100

120 0 10 20 30 40 50
Position (pixel)

Figure 7.20: We see here data from two interference experiments from the highly
elongated BEC described in the text. Data for two different trap separations are
shown. A clear interference pattern is observed, despite significant longitudinal
phase fluctuations in this condensate. However the fringe visibility is reduced com-
pared to typical interference experiments using our usual condensate.
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Figure 7.21: Distribution of relative phases from 24 repetitions of the same experi-
ment. The fringe visibility is plotted on the radial axis. The phase spread of the data
is Ap = 109°. The length mean phasor is less than the Rayleigh radius of a uniform
distribution at the 95% confidence level.

Typical experimental data from an interference experiment with the elongated BEC,
run in the same way as described in section 7.2, is shown in figure 7.20 and figure 7.21.
The interference pattern was observed after 16 ms time of flight.

In figure 7.20 I show typical interference patterns for experiments with two different
amplitudes of the final RF field. The observed wavelengths of 30 um and 20 um corre-
spond to a mean separation between the modes of 2.5 pm and 3.7 pm. A clear interference
signal is seen, but the visibility of the fringes is less than in our usual experiments. This
was always the case with the elongated condensate. In addition, we never observed phase
coherence between the two modes of the elongated BEC. A typical data set from 24 rep-
etitions of the same experiment is shown in figure 7.21. We cannot distinguish this data
set from a random sampling from a uniform phase distribution. We speculate that this is
due to rapid decoherence due to longitudinal phase fluctuation after the two modes of the

elongated condensate separate.

7.5.4 Interference of Zeeman Sublevels

Finally, we investigated the effect of projecting the atoms trapped in the RF dressed state
potentials onto different Zeeman sublevels in the turn-off of the double well potential.
We were interested in whether a projection onto different mp—states might affect the
contrast of our interference experiments. In order to study this effect we keep a small
DC current flowing through the trapping wires for a short period when we switch off the
trapping potential. The atoms were thus exposed to a vertical field gradient during the
first ~ 100 — 200 us of free fall, which separated the mr components enough for them to
be be resolved at long drop times.

What we then observed was an interference pattern for each of the separate mp —states.

137



Matter Wave Interference 7.5 Some observations about BEC interference

Density (a.u.)
Density (a.u.)

L L L L L L L L L L L L
0 10 20 30 40 50 0 10 20 30 40 50

Position (pixel) Position (pixel)

Figure 7.22: Interference of Zeeman sublevels separated by a magnetic field gradient
in free fall. Here we see high visibility fringes on the mp = 1,2 components of the
condensate, which have been separated during the trap turn off by a vertical field
gradient.

A typical example is shown in figure 7.22. Interference patterns with good fringe visibility
are seen on two of the three components. The corresponding line densities extracted from
the centre of the cloud via our usual procedure are also shown in the figure. The anti-
trapped states are rapidly expelled from the trapping region during the trap turn off, but
the mp = 0, 1,2 states can be seen in figure 7.22. The density of atoms in the mr = 0O state
in the figure is too small to observe interference fringes, but we have seen fringes on this
component in other experiments. The relative populations of the mr components depends
on the phase of the RF dressing field at the moment when it is switched off. We have found
that this is reproducible, allowing us to gather some statistics on the interference patterns
that we observe. A typical data set is presented in figure 7.23. Histograms of the relative
phases measured by the mr = 0, 1,2 components indicate that phase coherence between
the two modes is preserved during the projection onto the mp—states. In addition, there
is a clear correlation between the phases observed in each of the two clouds.

From a practical point of view this is interesting because it allows us to gather infor-
mation about the phase shifts that are acquired between the two modes after the projection

due to stray magnetic field gradients in the turn off of the trap and in free fall. Each of
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Figure 7.23: Relative phases of the different Zeeman components are clearly non-
random and correlated.

the mp —states will respond differently to these field gradients, potentially allowing us to

quantify systematic errors introduced during this stage of the read-out process.
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Chapter

Outlook

I have demonstrated in this thesis that we are able to split a single Bose Einstein conden-
sate coherently in a double well. This means that our atom chip can be used as a matter
wave interferometer.

The outlook for this experiment is now extremely promising. A systematic study of the
the phase spreading dynamics is now under way, with the aim of increasing the coherence
time of the separated condensate modes. Once this is properly characterised, we aim to
show that we can use the interferometer as a sensitive device for measuring small forces
acting on the atoms. We are also studying how to control the splitting process in order to
reduce the relative number fluctuations between the two modes, and thus further increase
the coherence time. These studies will be reported in the thesis of the current graduate

student running the experiment, Florian Baumgirtner. I wish him the best of luck.
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