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(24 h here but only 3 h in the measurement of the best number
squeezing).

With knowledge of the fluctuation in two conjugate spin direc-
tions, it is possible to make statements about entanglement in the
spin system12,16,29. For distinguishable particles, entanglement is
defined as the non-separability of the overall density matrix. The
problem of indistinguishability of the atoms in a Bose–Einstein con-
densate can in principle be overcome by a local operation whereby
the particles are localized to distinguishable positions in space with-
out affecting the spin properties of the collective system16. Because
local measurements cannot generate entanglement, it must have been
present beforehand. The values of squeezed and antisqueezed fluc-
tuations in two orthogonal spin directions imply a lower bound for
the block size of the largest non-separable part of the density matrix16.
The measured number squeezing, j2

N, and coherence, Æcos Qæ, imply
the entanglement of 170 atoms (red data point in inset of Fig. 3b),
and we can exclude entanglement of fewer than 80 atoms with a 3-s.d.
confidence level.

We have directly demonstrated the feasibility of nonlinear atom
interferometry beyond the standard quantum limit using a macro-
scopic ensemble of atoms. Precise characterization of the output state
of the nonlinear beam splitter shows that coherent spin squeezing of
j2

S 5 j2
N/Æcos Qæ2 5 28.2 dB is obtainable. In principle (that is, if

there is no excess technical noise), this allows for a 61% increase in
phase sensitivity over classical linear interferometry. This is a signifi-
cant step towards useful spin squeezing in atom interferometry, as to
our knowledge previously reported atomic coherent spin squeezing
has been limited to 25.6 dB (refs 13–15, 26). The extension of many-
particle atom interferometry to the nonlinear regime is thus an
advance towards applied quantum atom optics using coherent inter-
actions between atoms. We note that the group of P. Treutlein has

independently realized internal-state spin squeezing on an atom chip
through controlled interactions using state-dependent potentials31.
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Figure 3 | Characterization of the quantum state within the nonlinear
interferometer. a, One-axis-twisting dynamics of a coherent spin state
evolving under a pure xJ2

z Hamiltonian. By analogy with the non-interacting
Hamiltonian H/B5Dv0Jz, we expect eigenstates of Jz to rotate around the Jz

axis at a rate proportional to hH/hJz. In the interacting case, this gives a
rotation rate proportional to Jz. Because a coherent spin state with
| ÆJzæ | , N/2 can be described as a superposition of several of these
eigenstates, the twisting effect shown in the left-hand column appears. After
a fixed evolution time of 18 ms, a coupling pulse rotates the quantum state
around its centre and the fluctuations DJz are detected. The graph shows the
observed number squeezing factor, j2

N, at the output of this nonlinear beam
splitter as a function of rotation angle, a. The blue data have been corrected
for photon shot noise and the red data additionally take the technical noise
into account (Supplementary Information). For clarity, 1-s.d. error bars are
given for the red data only. We observe a best number squeezing factor of
j2

N 5 28.2z0:9
{1:2 dB. b, Noise tomography of the output state of the nonlinear

beam splitter. The dotted box indicates the region detailed in a. The largest
fluctuations we measure have a number squeezing factor of
j2

N,max 5 110.3z0:3
{0:4 dB, resulting in an uncertainty product of the conjugate

variances 1.65 6 0.35 times larger than expected for a minimal-uncertainty
state. The black line is a fit to the data allowing for one free parameter in the
two-mode approximation. Because the theory does not include the 15%
atom loss, it overestimates the optimal suppression of number fluctuations.
Nevertheless, we find good agreement confirming the expected
interdependence between number squeezing and purely interaction-driven
phase dispersion. Knowledge of the minimal and maximal spin fluctuations
in two orthogonal directions allows for a statement on the many body
entanglement present in the system12. The inset shows theoretical limits for
j2

N for different minimal non-separable block sizes of the N-particle density
matrix (grey lines)16. These sizes equal the numbers of entangled atoms. The
red data point is the result of the noise tomography and indicates
entanglement of more than 80 atoms with a 3-s.d. confidence level.
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FIG. 1. (Color online) (a) The setup of the experiment for the
balanced polarimeter arrangement. M, mirrors; PBS, polarizing beam
splitters; PD, photodetectors; λ/2, λ/4, wave plates. Direction of the
magnetic field B necessary for the observation of the Faraday rotation
is indicated. (For FS scheme the λ/2 plate is removed and PD2 is
not used). (b) Energy level structure with the Zeeman coherences
established by a linearly polarized light resonant with the F = 3 →
F ′ = 4 transition.

independent generic " and V systems which involve co-
herences between ground- and excited-state sublevels, re-
spectively, with #m = ±2. For not-too-strong light, the
excited-state coherences are negligible and the rotation signal
becomes sensitive mainly to the ground-state coherences.

The main difficulty in observation of NFR with cold atoms
is that at light intensity required for creation of the Zeeman
coherence the laser beam may mechanically perturb the cold-
atom sample. In our study this adverse effect is reduced by
retroreflection of the light beam and careful optimization of
the experimental conditions to minimize the light power.

III. EXPERIMENTAL SETUP

The experiment [(see the setup shown in Fig. 1(a)] was
performed with about 107 85Rb atoms using a standard MOT.
In addition to the trapping and repumping lasers we used a
separate probe laser whose frequency was tuned around the
F = 3 → F ′ = 4 hyperfine transition of the D2 line (780 nm).
Figure 1(b) depicts the Zeeman structure of the F = 3 and
F ′ = 4 states with the transitions induced by linearly polarized
light (superposition of σ± polarizations). A weak linearly
polarized probe beam of several µW in power and 2 mm in
diameter was sent through the atom cloud and retroreflected to
partially reduce light pressure effects. This was possible due
to low absorption, corresponding to resonant optical density
OD ∼ 0.5. The probe-beam frequency set 14 MHz below
the line center proved to be optimal from the point of view
of atomic loss which we attribute to extra Doppler-cooling
mechanism by two counter-propagating beams. The double
passage of light through the sample doubled the acquired

Faraday rotation. The light polarization was measured in two
configurations: using balanced polarimeter (direct rotation
angle measurement) and in a crossed polarizers or forward-
scattering (FS) scheme which for resonant light is sensitive
to the square of the rotation angle. For the nonresonant case,
circular dichroism contributes also to the observed signal.

In the experiment, atoms were collected and cooled in the
MOT. This phase was periodically interrupted for the measure-
ment of optical rotation: The trapping laser and the quadrupole
magnetic field were switched off and a homogenous magnetic
field B of a controlled value was applied along the probe beam.
After 2 ms (required for complete decay of the eddy currents
induced by turning off the quadrupole field), the probe beam
was switched on and polarization rotation was recorded for
the next 5 ms. Finally, the MOT fields were switched back
for 50–200 ms and the atomic cloud was recaptured and
cooled. During all measurements, the repumping laser was
kept constantly on to avoid hyperfine pumping by the probing
beam. This procedure allowed recording polarization rotation
signals as a function of time for each value of the B field.
The experiment was controlled by a PC, which also digitized,
stored, and averaged (typically 20 times) the data.

IV. RESULTS

A. Unmodulated light; B ∼ 0

Typical signals (rotation angle versus B) associated with
linear and nonlinear Faraday effect at a given time have the
form of dispersive resonances nested at B = 0, as shown
in Fig. 2. The narrow feature is the nonlinear resonance
(NFR); it appears when the probe beam is sufficiently intense.
Hereinafter, we refer to this nonlinear resonance as the
zero-field NFR resonance. The width of the linear resonance
amounts to several G and corresponds to the natural linewidth
of the studied transition. It also depends on the detuning
of the probe beam from resonance condition and initial
Zeeman-sublevel populations, as has been shown in [2]. That
situation is prominently different from the case of vapor cells,
where LFR resonance is two orders of magnitude broader,
because of the Doppler effect.
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FIG. 2. (Color online) Linear (wide) and nonlinear (narrow)
Faraday rotation resonances centered at B = 0. Signals were recorded
at the time τ = 2 ms after switching on the probing beam. The probe
power is 64 µW. At that power the NFR resonance is substantially
power broadened but is well visible in comparison with the LFR. The
slope of the central part is ≈0,6 rad/G.
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Can improved scaling give better sensitivity?

Napolitano, Nature 
486, 471 (2011)

�J / N�3/2

observed 
improved scaling

did not continue to 
large N, nor give 

improved absolute 
sensitivity

For photon numbers above NNL<2|107, the saturation of the non-
linear rotation alters the slope. This can be understood as optical
pumping of atoms into states other than jF 5 1, mF 5 1æ by the non-
linear probe. The damage to the atomic magnetization, g 5 1 2 wL9/wL,
also shown in Fig. 3, remains small, confirming the non-destructive
nature of the measurement. The finite damage even for small NNL
values is possibly due to stray light and/or magnetic fields disturbing
the atoms during the 20-ms period between the two linear measure-
ments. For large N, higher-order nonlinear effects including optical
pumping limit the range of super-Heisenberg scaling.

The experimental results illustrate the subtle relationship between
scaling and sensitivity in a nonlinear system. For an ideal nonlinear
measurement, the improved scaling would guarantee better absolute
sensitivity for sufficiently large N values. Indeed, when the measure-
ment bandwidth is taken into account, the nonlinear probe overtakes
the linear one at N 5 3.2 3 106, where both achieve a sensitivity of
1.1 3 102 spins Hz21/2. As a consequence, the nonlinear technique
performs better in fast measurements. In contrast, when measurement
time is not a limited resource, the comparison can be made on a
‘sensitivity-per-measurement’ basis and the ideal crossover point, of
3.2 3 103 spins at N 5 8.7 3 107, is never actually reached, owing to the
higher-order nonlinearities. Evidently, super-Heisenberg scaling allows
but does not guarantee enhanced sensitivity: for the nonlinear tech-
nique to overtake the linear, it is also necessary that the scaling extend to
large enough values of N. This example shows also that resource con-
straints dramatically influence the comparison between the linear and
nonlinear techniques. See also Supplementary Information.

We have experimentally realized a system designed to achieve
metrological sensitivity beyond the Heisenberg limit, dX!N{1, using
metrologically relevant interactions among particles. To generate pair-
wise photon–photon interactions, we use fast, nonlinear optical effects
in a cold atomic ensemble and measure the ensemble magnetization,

F̂z
! "

, with super-Heisenberg sensitivity dFz / N23/2. To quantify the
photon–photon interaction and the sensitivity rigorously, we calibrate
against a precise, non-destructive, linear measurement of the same
atomic quantity8, demonstrate quantum-noise-limited performance
of the optical instrumentation and place an upper limit on systematic,
that is, non-atomic, nonlinearities at the level of a few per cent. The
experiment demonstrates the use of interparticle interactions as a new
resource for quantum metrology. Although possible applications to
precision measurement will require detailed study, our experiment

shows that interactions can produce super-Heisenberg scaling and
improved precision in a quantum-limited measurement.

METHODS SUMMARY
Linear and nonlinear probe light. The probe beam is aligned on the axis of the
trap with a waist of 20mm, chosen to match the radial dimension of the cloud. In
the linear probing regime, we use a train of 40 1-ms pulses, with a repetition rate of
100 kHz, each containing 3 3 106 photons detuned by 11.5 GHz from the
F 5 1 R F9 5 0 transition. The maximum intensity is 0.1 W cm22. The signals
are summed and can be considered a single, modulated pulse.

The nonlinear probe consists of a single, Gaussian-shaped pulse with a full-
duration at half-maximum of 54 ns. The maximum intensity of the nonlinear
probe is 7 W cm22 for a pulse with 107 photons. Theory predicts that a(1) 5 0 at
a detuning of D 5 2p3 462 MHz in free space. This is modified by trap-induced
light shifts, and we use the empirical value D0 5 2p3 468.5 MHz, which gives zero
rotation at low probe intensity.
Instrumental noise. The instrumental noise is quantified by measuring var(Ŝy)
versus input photon number N (that is, NL or NNL), in the absence of atoms, to find
contributions from electronic noise (V(el) / N0), shot noise (N1) and technical
noise (/N2), as described in Supplementary Information. We find that the con-
tributions from electronic noise to the linear (V elð Þ

L ) and nonlinear (V elð Þ
NL ) probes are

3 3 105 and 4 3 105 per pulse, respectively, and that the technical noise is negligible.
The instrumentation is thus shot-noise-limited over the full range of N used in the
experiment. The intrinsic rotation uncertainty of the nonlinear probe, dwNL, is
calculated from the measured DwNL as dwNLð Þ2~ DwNLð Þ2{V elð Þ

NL . The correction
is at most 5%.
Instrumental linearity. The linearity of the experimental system and analysis is
verified by using a wave plate in place of the atoms to produce a linear rotation
equal to the largest observed nonlinear rotation. Over the full range of photon
numbers used in the experiment, the detected rotation angle is constant to within
5%, and SQL scaling is observed.
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Quantum atom-light interface

~106 87Rb atoms at 25µK 
f=1 ground-state 

1µs long pulses 
linearly polarized 

“mode matched” to atoms 
0.7 GHz from D2 line

1 effective OD > 50 
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3 QND measurement 
4  spin squeezing 
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Measurement sensitivity
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Measurement sensitivity

nonlinear read-
out sensitivity
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Nonlinear beats linear read-out
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we optimise measurement sensitivity with respect to:
• probe detuning Δ 
• probe power N (photon number) 
• sample optical depth d0 (atom number, interaction strength)



Nonlinear beats linear read-out

we optimise measurement sensitivity with respect to:
• probe detuning Δ 
• probe power N (photon number) 
• sample optical depth d0 (atom number, interaction strength)



enhanced scaling

Can improved scaling give better sensitivity?

�Jy / N�3/2

better absolute 
sensitivity

vs. (N, Δ, d0)

metrologically 
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Jy / Bz
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