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We propose a method for the detection of ground state quantum phases of spinor gases through a series
of two quantum nondemolition measurements performed by sending off-resonant, polarized light pulses
through the gas. Signatures of various mean-field as well as strongly correlated phases of F ! 1 and
F ! 2 spinor gases obtained by detecting quantum fluctuations and mean values of polarization of
transmitted light are identified.
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It was demonstrated several years ago that fundamental
quantum spin noise of a collection of cold atoms can be
measured via quantum noise limited polarization spectros-
copy [1]. Since then, a quantum interface of light with
optically thick atomic spin ensembles has become a prom-
ising and powerful method for a transfer of quantum
information between atomic internal degrees of freedom
and light. The basic concept underlying such atom-light
interfaces is provided by the off-resonant coupling of the
collective atomic spin, i.e., of several magnetic sublevels,
to the polarization of light. In particular, such an off-
resonant interaction, followed by a quantum measurement
on light, has been shown to be a powerful quantum non-
demolition (QND) tool to generate spin squeezed and
entangled atomic states [2–6], to teleport quantum states
between ensembles [7], or to propose [8,9] and realize [6]
high fidelity quantum memories for light.

In the present Letter we propose to apply quantum
polarization spectroscopy techniques for the detection of
various quantum phases of degenerate atomic gases, i.e.,
with atoms having spin degrees of freedom. Such ultracold
spinor gases have recently brought a new perspective to the
study of magnetic systems. Seminal experiments of the
MIT group with an optically trapped spin F ! 1 sodium
condensate [10], and theory papers of Ho [11], and Ohmi
and Machida [12] have triggered the use of cold atoms to
study magnetic ordering and domains. Spin interaction
effects are very much enhanced in the strongly correlated
regime, which nowadays is reachable experimentally [13]
by loading an ultracold spinor gas into an optical lattice so
that the kinetic energy (tunneling) becomes small in com-
parison with atom-atom interactions. Then the atoms can
be well described by a generalized spinor Bose-Hubbard
Hamiltonian (BHH) [14–16]. In the limit of small occu-
pation number it reproduces accurately (within the experi-
mentally achievable regime) some of the most paradig-
matic spin chain models. Experimental observation of the

rich variety of magnetic ordering present in these systems
remains, however, elusive due to similar values of the
scattering lengths on the different spin collision channels.

A way to determine properties of a quantum spinor gas
could be to use a strong QND measurement. As shown
here, a series of QND measurements using polarization
spectroscopy on light transmitted through a condensate
yields mean values and variances of the atomic total spin
operators, thus allowing unambiguous distinction of vari-
ous atomic quantum phases.

Formalism—We consider a sample of neutral atoms in a
(2F" 1)-dimensional ground state manifold jF;mi, inter-
acting off resonantly with linearly polarized light propa-
gating along the z direction (cf. [17]). After adiabatically
eliminating excited atomic states, the interaction can be
described via an effective Hamiltonian
 

Ĥeff
int ! #

Z L

0
dz!A$a0"̂" a1ŝzĵz

" a2%"̂ĵ2
z # ŝ#ĵ2

" # ŝ"ĵ2
#&'; (1)

where L is the length of the atomic sample. The conditions
under which decoherence due to absorption of light can be
neglected, such that this Hamiltonian is valid, will be
discussed below. In Eq. (1), ai / @#$2c=$16%A!', where
A is the cross section of the atomic sample overlapping
with the probe light, ! is the detuning, ! is the (in general
z dependent) atomic density, $ is the wavelength, and # is
the excited state line width. ŝ& ( ŝ&$z; t' (ŝ) ! ŝx ) iŝy)
are the components of the Stokes vector characterizing the
polarization of the light pulse, "̂$z; t' is the photonic
density, and ĵ ( ĵ$z; t' are atomic spin operators. The
term proportional to a0 corresponds to the ac Stark shift,
while a2 ! 0 for values of ! large compared to the excited
state hyperfine structure [17]. Here we assume a2 ! 0 and
restrict to the linear coupling between the Stokes operator
and the atomic spin, which represents a QND Hamiltonian.
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component of the atomic spin vector, with the correspond-
ing quadrature denoted as X̂U.

Detecting spin-1 quantum phases.—In the mean-field
case, a gas of F ! 1 atoms has two possible ground states
[11]: a ferromagnetic one with all spins having maxi-
mal spin projection in some direction ( cos! sin",
sin! sin", sin" sin"), and thus hĵi ! 0, and a polar one
with hĵi ! 0. Inserting the ferromagnetic spinor !f !
"e#i!cos2 "

2 ;
!!!
2
p

cos"2 sin"2 ; e
i!sin2 "

2$ into Eqs. (6) leads
to hX̂out

S i ! ##
!!!!!!!
NA
p

cos", hX̂out
U i ! #

!!!!!!!
NA
p

sin! sin",
"!X̂out

S $2 ! "1% #2sin2"$=2, "!X̂out
U $2 ! "1% #2&1#

sin2"sin2!'$=2. These equations are valid provided the
mean polarization of the probe light remains to be x
polarized which is true under the feasible assumption
NA ( NP. For the polar phase, the spinor can be parame-
terized as !p ! "#e#i! sin";

!!!
2
p

cos"; ei! sin"$=
!!!
2
p

, and
we have hX̂out

S i ! 0 ! hX̂out
U i and "!X̂out

S $2 ! "1%
2#2sin2"$=2, "!X̂out

U $2 ! "1% 2#2&1# sin2!sin2"'$=2.
Characterizing the atomic phases by the additional noise
"!X̂out

S=U$2 # 1
2 ) $2

S=U imprinted on the X̂ quadratures, we
obtain for the ferromagnetic phase $2

U ! 1
2#

2 # $2
Ssin2!,

with 0 * $2
S * 1

2#
2, and for the polar phase $2

U ! #2 #
$2
Ssin2!, with 0 * $2

S * #2. Possible values of the addi-
tional noise lie in nonoverlapping triangles in the ($2

S,
$2
U) plane, see Fig. 1(a). Thus both phases can be distin-

guished through the noise imprinted on the light. In this
particular case, they can also be distinguished by compar-
ing the mean values of the light quadratures [for "!;"$ !
"0;%=2$].

For the F ! 1 lattice gas with a single particle per site,
the effective Hamiltonian is Ĥlat !

P
hkli&cos&ĵkĵl %

sin&"ĵkĵl$2', where the sum runs over nearest neighbors.
We consider only the ground states of 23Na discussed by
Imambekov et al. [14] (for numerical investigations see
[23]): (i) for a fully polarized state the properties of the
outgoing light are as in the ferromagnetic case discussed
before; (ii) a state mixing total spin Ftot ! 0 and Ftot ! 2
on each bond, constructed as

Q
mj!pim, gives results as for

the polar mean-field state; (iii) singlets (dimers) can be put
on every second bond (in 1D), in this way breaking trans-

lational symmetry. The reduced on-site density matrix is
'k ! 1

3 , and thus hXout
S i ! 0. As hĵzkĵzl i ! 2

3 for k ! l, # 2
3

for nearest-neighbors in a singlet state, and 0 otherwise, for
an even number of sites that the fluctuations are un-
changed: "!X̂out

S $2 ! 1
2 . For an odd number of sites in

1D, or randomly oriented dimers in 2D, n atoms will be
unpaired and thus "!X̂out

S $2 ! 1
2% 2n#2="3NA$. Because of

the rotational symmetry of the singlet, the same result is
obtained for the X̂U quadrature. (iv) In 1D and for & !
# arctan"13$, the ground state is a valence bond solid (VBS)
state [24]. Its two-site correlations decay as hĵkz ĵlzi ! 4

3 +
"# 1

3$jk#lj (k ! l) [24]. Since the VBS is nonmagnetized,
the means of the quadrature components remain un-
changed. As the sum of hĵkz ĵlzi over all pairs of atoms gives
2
3 independent of the number of sites, there is no detectable
change in the fluctuations: "!X̂out

S $2 ! 1
2% 2#2=3NA. Thus

distinguishing between a dimer and a VBS state is difficult
with this method, but in principle possible for small NA.

For two atoms per lattice site, in the limit of vanishing
tunneling the ground state consists of noninteracting sin-
glets on each site. As tunneling is increased, on-site states
with total spin 2 become important. Using a variational
ansatz

Q
kj ik with j ik ! cos"jFtot ! 0; Ftot

z !
0i% sin"jFtot ! 2; Ftot

z ! 0i, a sharp jump of sin"
from 0 to a nonzero value is found as tunneling is increased
[14]. Evaluating the quadrature operators of the outgoing
light, we find hX̂out

S i ! 0 ! hX̂out
U i, but modified noise prop-

erties: "!X̂out
S $2 ! "1% 3#2sin2"sin2"$=2, "!X̂out

U $2 !
"1% 3#2sin2"&1# sin2!sin2"'$=2, where !, " parame-
trize the direction of the component with Ftot ! 2. The
sharp change in the nature of the ground state manifests
clearly in the noise properties of the outgoing light. Let us
emphasize that as light couples to single atoms, here
fluctuations are different from those arising from fully
polarized F ! 2 atoms, as will be discussed now.

Detecting spin-2 quantum phases.—For F ! 2, there
are three different ground state phases in the mean-field
case [20]: (i) ferromagnetic, hĵi ! 0, characterized by spin
projection m ! 2 (a) or m ! 1 (b) in some direction,
(ii) polar, characterized by ( ! P

m"#1$m)m)#m ! 0

 

0 0.2 0.4 0.6 0.8 1
S

2 2

0

0.2

0.4

0.6

0.8

1

U2
2

a
Ferromagn. Polar

AKLT Dimer

0 0.5 1 1.5 2
S

2 2

0

0.5

1

1.5

2 b

Cyclic i iii

Ferrom., m 2

Ferrom., m 1

Polar

0 0.5 1 1.5 2
S

2 2

0

0.5

1

1.5

2

U
2

2

c

, singlet 0

Ferrom., m 2

Ferrom., m 1

Polar

ξ ξ

κ κ κ

κ κ
FIG. 1 (color online). Possible combinations of additional fluctuations $2

S and $2
U imprinted on the light for the ground state phases of

the F ! 1 spinor gas in a uniform trap and in an optical lattice (a) and for F ! 2 atoms in a uniform trap (b) and in an optical lattice (c).
Filled areas denote cases where the mean of hXout

S i and/or hX̂out
U i is (generically) nonzero. The spheres in (a) illustrate the directions of

the spinor for the extremal points of the ferromagnetic phase.
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Figure 1 Antiferromagnetic states of spin-1 lattice systems. a, 3D cubic lattice
with a paramagnetic state of unpolarized atoms. b, Dimerized state with pairs of
neighbouring atoms forming singlets. c, Trimerized state with triples of neighbouring
atoms forming singlets. d, AKLT state obtained from a concatenation of spin-1/2
singlets by projecting pairs of spins from different bonds into the subspace of total
spin-1 (ref. 25).

of the total spin. The paramagnetic state, Fig. 1a, exhibits large
(proportional to the total number of atoms, Nat) fluctuations of
the total spin, whereas Fig. 1b–d shows global singlets, that is, states
with total spin zero, which do not show any fluctuations. Obviously,
those most interesting strongly correlated global singlet states of
Fig. 1b–d cannot be distinguished from each other by spatially
homogeneous probing. However, probing only every second atom
in, for example, the dimerized state in Fig. 1b, that is, measuring
the total staggered magnetization of the state, will result in its
correlations imprinted on the light. As we shall demonstrate below,
this type of measurement oVers the possibility to distinguish
between various global singlets, with minimal disturbance to
the system.

DETECTION SCHEME

The detection mechanism proposed here uses the oV-resonant
interaction of spin-F atoms (that is, atoms having a 2F + 1
dimensional ground-state manifold) with a polarized light beam
propagating in the z direction (for a theoretical description of light–
atom coupling see refs 16,18). The light pulse is characterized by
the Stokes operators ŝ1, ŝ2, ŝ3 corresponding to the diVerence in
the number of photons in the x and y linear polarizations, in the
±45� linear polarizations and in the two circular polarizations,
respectively. Let us first consider a one-dimensional (1D) sample

–

Figure 2 Schematic diagram of the experimental set-up. A strong laser beam
(yellow) initially polarized in the x direction is impinging on a 99/1 beamsplitter. The
transmitted attenuated part of this probe is propagating through the sample and
reflected off a mirror, such that a standing wave with wavevector kP in the z
direction is formed at the position of the atomic sample. After the second pass, the
laser beam is outcoupled to a homodyne detector, where hŜ2i is recorded. The
atoms are trapped in an optical lattice (red) with wavevector k. Its relative
displacement with respect to the probe standing wave can be changed by either
moving the end mirror, or by introducing a phase shift between the
counterpropagating laser beams.

of Nat atoms trapped in a 1D optical lattice of period ⇡/k,
oriented in the z direction, with the n th atom located at position
zn = (n � 1)⇡/k, having the spin operator ĵ(zn). The relevant
dispersive part of the interaction hamiltonian between light and
atoms reads16,18 (see the Methods section)

Ĥ = � ŝ3 Ĵ eV

z . (1)

Here  is the coupling constant and Ĵ eV

z is the z component of the
eVective collective atomic spin ĴeV = P

n cn ĵ(zn). The coeYcients
cn account for the modification of the atom–light coupling due to
a spatial modulation of the probe beam intensity (in a running-
wave configuration ci ⌘ 1) and are the key parameters allowing for
spatial resolution. As a particular case, we consider a standing-wave
configuration, as described in the caption of Fig. 2. Then,

cn ⌘ cn(kP,a) = 2
Z

dzcos2(kP(z �a))|w(z � zn)|2, (2)

where kP is the wavevector of the standing-wave probe and a is
its shift with respect to the optical lattice; w(z � zn) is the usual
Wannier-type wavefunction of a single atom confined at zn in a
deep optical lattice.

We take the probe beam to be strongly polarized in the
x direction so that Ŝ1 (Ŝi = R

sidt) fulfils hŜ1i = Nph/2 � 1.
This fact permits us to introduce canonical quadrature
operators X̂ = Ŝ2/

p
Nph, P̂ = Ŝ3/

p
Nph, which satisfy [X̂, P̂] ⇡ i.

Integrating the Heisenberg equation of motion for ŝ2 shows
that the eVective collective spin Ĵ eV

z is imprinted on the X̂
quadrature of light:

X̂out = X̂ in � p
FNat

Ĵ eV

z . (3)

As hX̂ ini= 0, the mean of this quadrature after passing through the
sample is directly proportional to the mean of the z component of
the eVective atomic spin. Its variance contains the shot noise of the
incoming probe pulse and the variance of Ĵ eV

z . Assuming a coherent
input beam:

h(1X̂out)
2i = 1

2
+ 2

FNat

h( Ĵ eV

z �hĴ eV

z i)2i. (4)

The variance of the collective atomic spin can be eYciently
determined from the measurement of light if =p

d⌘�1 (ref. 16).
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Figure 3 Detection of antiferromagnetic states of spin-1 lattice systems. a–d, Fluctuations (" (2 )⌘ h(1 X̂out )2i�1/2) imprinted in the X̂ quadrature of the probe light
beam transmitted through a sample of spin-1 atoms in a 1D lattice versus the wavevector of the probe kP (k ) and the shift a, for unpolarized paramagnetic (a), dimerized (b),
trimerized (c) and AKLT (d) states. Whereas the presence of fluctuations at kP/k= 0 signals the unpolarized paramagnetic state, the other three global singlets phases can
be unambiguously distinguished at different values of the ratio kP/k and/or the shift a (see the main text for details).

Here, d = Nat�/A denotes the resonant column optical depth of
the atomic sample and ⌘ = (Nph�� 2)/(�2A) is the probability
of resonant excitation per atom by the probe, where � is the
cross-section on resonance for the probe transition, � is the
spontaneous decay rate, � is the detuning from resonance and A is
the cross-section of the atomic ensemble illuminated by the probe.
As spontaneous emission destroys the spin state and the QND
character of the coupling, the condition ⌘ ⌧ 1 has to be fulfilled.
To evaluate the decoherence (and heating) caused by the probe, we
need to estimate the eVect of spontaneous emission on the variance
of the light quadrature. The induced probe decoherence is given by
h(1Jdecoh

z )2i/FNat ⇡ ⌘ (in units of the coherent spin-state noise).
Therefore, the total measured noise reads

h(1X̂out)
2i = 1

2
+2

"
h(1 Ĵ eV

z )2i
FNat

+⌘

#

. (5)

To measure the atomic spin fluctuations with the best
possible accuracy, we need to maximize the signal-to-noise
ratio [2h(1 Ĵ eV

z )2i/FNat]/[1/2+2⌘]. For a coherent input beam,
this contribution is maximized for ⌘opt ⇡ 1/

p
2d. Notice that ⌘ can

be adjusted to ⌘opt, by choosing the appropriate detuning, intensity
and duration of the laser probe. On the other hand, the optical
depth of a sample of ultracold atoms, including, for example, a
cubic lattice with 100⇥100⇥100 atoms, can easily reach values of
a few hundred. Thus, the value of ⌘ can be made much smaller than
1 (ref. 19). As the spin noise of interest (as shown in Fig. 3) is of the
order of unity, the extra noise provided by spontaneous emission
does not, therefore, significantly modify the measured variance of
the light quadrature.

Furthermore, squeezing the X̂ quadrature of the incoming
probe before passing it through the sample such that
h(1X̂ in)

2i < 1/2, allows us to improve the signal-to-noise ratio
even further. Finally, let us mention that from the data recorded

at the homodyne detector, higher order terms h(1X̂out)
mi can also

be extracted.
To achieve a spatial modulation of the atom–light coupling,

kP/k 6= 1 is necessary. The wavelength of the probe laser and thus
kP is constrained by the near-resonant condition for an eYcient
QND probing. In addition, the choice of the wavelength of the light
forming the optical lattice is limited. Thus, tuning the wavelengths
of the lasers only gives restricted control over the ratio kP/k. An
appropriate choice of the ratio can, however, be achieved in various
ways: (1) trivially by modifying k by changing the angle between the
beams forming the optical lattice; (2) more surprisingly, by shining
the probe light at an angle ✓ to the lattice. The eVective hamiltonian
then reads

H = � ŝ3

⇣
cos✓ Ĵ eV

z � sin✓ Ĵ eV

y

⌘
, (6)

and the eVective wavevector for a 1D sample oriented in the
z direction is kP = 2⇡cos ✓/lP, where lP is the wavelength of
the probe laser. Finally, (3) a probe standing wave with variable
kP can be obtained from crossing the probe laser beams at a
variable angle. This last approach leads, however, to a diVerent
interacting hamiltonian.

QUANTUM ANTIFERROMAGNETS IN 1D

Let us now illustrate the power of our proposal, by applying it
to concrete examples of strongly correlated states that can be
realized with ultracold atoms. Particularly challenging are in this
context various possible quantum antiferromagnetic states that lie
in the centre of interest of condensed matter and even high-energy
physics20,21. We will analyse some of the states that appear as ground
states (or idealizations thereof) of the generalized Heisenberg spin-
1 atomic chain22–24 (see the Methods section). For some choice of
parameters such systems are in the so-called Haldane phase. This
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Preparation, manipulation and detection of strongly correlated states of quantum many-body systems are among the most important
goals and challenges of modern physics. Ultracold atoms oVer an unprecedented playground for the realization of these goals. Here,
we propose a method for detecting strongly correlated states of ultracold atoms in a quantum non-demolition scheme, that is, in the
fundamentally least destructive way permitted by quantum mechanics. In our method, spatially resolved components of atomic spins
couple to quantum polarization degrees of freedom of light. In this way, quantum correlations of matter are faithfully mapped on
those of light; the latter can then be eYciently measured using homodyne detection. We illustrate the power of such spatially resolved
quantum-noise-limited polarization measurement by applying this method to the detection of various standard and ‘exotic’ types of
antiferromagnetic order in lattice systems, and by indicating the feasibility of detection of superfluid order in Fermi liquids.

Future applications of quantum physics for quantum simulations,
computation, communication and metrology will require an
extremely high degree of control of the preparation, manipulation
and, last but not least, detection of strongly correlated states
of quantum many-body systems. Ultracold atoms oVer an
unprecedented playground for the realization of these goals.
Several paradigm examples of strongly correlated states have been
successfully realized, such as the Mott insulator, the Tonks gas
and the Bose glass (for a review see ref. 1). A standard way of
analysing such systems is by releasing the atoms from the trap
and carrying out destructive absorption spectroscopy, which only
allows measurement of the column density of the expanded cloud.
Considerable attention has thus been devoted recently to novel
methods of detection that allow measurement of (spin) density–
density and other higher order correlation functions. One of those
methods is atomic noise interferometry2, the power of which is
well illustrated in the recent observation of the bosonic and the
fermionic Hanbury Brown–Twiss eVect3,4. Direct atom counting
is another way to measure this eVect, and to even go beyond
it5; it can be realized directly with metastable helium atoms6,7,
or by using methods of cavity quantum electrodynamics8. Cavity
quantum electrodynamics is also essential in the recent proposals
of refs 9,10, whereas ref. 11 proposes how to prepare and detect
magnetic quantum phases using superlattices. All of the above
approaches are, at least in some respects, destructive and frequently
suVer from undesired atom number fluctuations that are inevitable
in the preparation of the quantum states.

Here, we propose a unique method that allows for spatially
resolved quantum non-demolition12 (QND) detection of
quantum states of ultracold atoms with internal (pseudo-)spin
degrees of freedom. Our approach is based on the idea of

quantum-noise-limited polarization spectroscopy, which is
demonstrated in ref. 13. Polarization spectroscopy consists of
shining a polarized probe laser beam through the atomic spin
system, and has been a subject of studies for many years14. What
is novel in quantum-noise-limited schemes is that quantum
polarization degrees of freedom of light couple to the atomic spins,
and in this way quantum fluctuations of the spins (magnetization)
are faithfully mapped onto those of light; they can then be
eYciently measured using homodyne detection of the transmitted
probe. With an appropriate choice of parameters, and provided
that shot-noise-limited detection of light is achieved, this approach
has proved very successful for QND-based quantum interfaces
between light and atoms. In particular, atomic squeezing15, atomic
entanglement, quantum memory and teleportation have been
achieved in this context (for a review see ref. 16 and references
therein). We have recently proposed to apply this approach to
detect magnetic order of weakly correlated ultracold atoms17.
Unfortunately, such a proposal does not provide spatial resolution,
and thus it cannot, for example, discriminate between diVerent
antiferromagnetic quantum phases present in lattice models. Here,
we show that this important limitation can be overcome by using
a standing-wave probe laser configuration. Such a modification is
crucial: it allows for spatially periodic QND coupling of light to
atomic spins, and thus can reveal spin correlations with the period
of coupling. The quantum noise of the transmitted light then
carries information on the Fourier components of the spin density.
Controlling the parameters of the lattice and of the probe-light
standing wave permits discrimination and characterization of
various standard and ‘exotic’ magnetic orderings.

Figure 1 shows schematic diagrams of various important lattice
states, all of them having a zero average of any component
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Example: 1D chain of spin-1 atoms described by 
the bilinear-biquadratic Hamiltonian
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FIG. 3. (Color online) (left) The function ε(kP ,α) (in units of κ2)
for different values of θ in the three phases for L = 132: top,
θ = −0.5π (dimer); middle, θ = 0 (Haldane); bottom, θ = 0.3π

(critical). (right) The same plots but restricted to α = 0.

The dimer phase. In the region −3π/4 < θ < −π/4 the
ground state is gapped and breaks translational invariance,
organizing in slightly correlated dimers. For −3π/4 < θ <
−π/2 it is still under debate whether the system is always
dimerized or it becomes nematic [20]. Numerical results
[14,15] show that the dimer order parameter, D = |⟨Hi −
Hi+1⟩|, where Hi = cos(θ )Si · Si+1 + sin(θ )(Si · Si+1)2, is
different from zero up to values very close to θ = −3π/4.

Here we calculate the variance ε(kP ,α), which depends on
all possible two-spin correlations for the ground state of the
system at different points of the phase diagram given by θ .
Ground states are found numerically using a density-matrix

renormalization group (see, for example, [21]) with open
boundary conditions. We used the DMRG code available at
[http://www.dmrg.it]. In Fig. 3 we show ε(kP ,α) for three
different values of θ corresponding to the critical, Haldane,
and dimer phases. A common feature of the three phases is the
presence of a high peak at kP d = π/2 due to antiferromagnetic
correlations. Such a peak is absent in the ferromagnetic
phase. Apart from this, the plots in the three phases are
qualitatively different. In fact, in the critical phase, the signal is
characterized by peaks at kP d ∼ π/3 and kP d ∼ 2π/3. These
resemble the peaks of the magnetic structure factor S(2kP ) [17]
and are due to the period-3 oscillations of the correlation
functions. These correlations are fundamental for the detection
of the critical phase. For θ < −π/4 we find the appearance of
other small peaks at kP d = π/4 and kP d = 3π/4, signaling, as
we show below, the dimer order. Finally, in the Haldane phase,
the signal ε(kP ,α) lacks nontrivial features for kP d ̸= π/2.

We now use the quantity &ε(kP ,α1,α2) introduced in
Eq. (5) to detect the critical and dimer phases. To see how
to choose parameters kP ,α1, and α2, let us consider the critical
phase. In this case it is natural to take kP = π/3d. Then we
study the behavior of ε(π/3d,α) in the critical phase as a
function of α. The numerical analysis, reported in Fig. 2(b),
shows that the quantity ε(π/3d,α) is a sinusoidal oscillating
function of α. The role of correlations at kP = π/3d is
optimized by taking the difference between its maximum
value at α1 = 5/4 and its minimum at α2 = 1/2. We then
introduce Cε = &ε(π/3d,5/4,1/2), which we consider as an
order parameter for the critical phase. Since the ground state
has zero angular momentum, we obtain

Cε = 1
L

∑

mn

cos
[

2π

3
(m + n) + π

3

]
Gz(m,n). (7)

The quantity Cε is sensitive to correlations that oscillate with
a period 3 and represents a footprint of the critical phase.
In Fig. 4(a) we show the signal Cε for different values of
θ . The results clearly show that the critical phase is very well
detected by a positive value ofCε . For θ = 0.2π , in the Haldane
phase and close to the phase transition, we still observe a large
positive value, probably due to residual period-3 correlations
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FIG. 4. (Color online) (a) The quantity Cε = &ε(π/3d,5/4,1/2) (circles), in units of κ2, as a function of θ for L = 132 and the rescaled
magnetic structure factor [S(2π/3d) − 1]/5 (squares). Inset shows finite-size scaling of Cε for θ = 0.2π . The solid line scales as 1/L.
(b) The quantity Dε = &ε(π/4d,1/2,3/2) (circles), in units of κ2, for different values of θ for L = 132 and the rescaled dimer order parameter
DR = D/5.38. In both plots, we distinguish the model phases with different shading: horizontal lines, dimer; no shading, Haldane; oblique
lines, critical.
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Abstract. We study squeezing of the spin uncertainties by quantum non-
demolition (QND) measurement in non-polarized spin ensembles. Unlike the
case of polarized ensembles, the QND measurements can be performed with
negligible back-action, which allows, in principle, perfect spin squeezing as
quantified by Tóth et al (2007 Phys. Rev. Lett. 99 250405). The generated
spin states approach many-body singlet states and contain a macroscopic
number of entangled particles even when individual spin is large. We introduce
the Gaussian treatment of unpolarized spin states and use it to estimate the
achievable spin squeezing for realistic experimental parameters. Our proposal
might have applications for magnetometry with a high spatial resolution or
quantum memories storing information in decoherence free subspaces.
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Figure 2. Dynamics of the spin squeezing parameter ⇠ 2
s as a function of the

time for 87Rb atoms with spin 1. Sequential QND measurements are made of
the x-, y- and z-spin components, with interaction time t up to 2⌧ . The initial
state is the completely mixed state (upper traces) or the state of (19) (lower
traces). (Solid) Gaussian approximation without losses. (Dotted) Gaussian
approximation including losses with (from top to bottom) ↵ = 50, 75 and 100.
(Dots) exact model.

Let us now make the calculations for realistic parameters. We consider N = 106 87Rb atoms
with spin j = 1, and for the light field S0 = 5 ⇥ 107. Sequential squeezing of the x, y and z spin
components is shown in figure 2. The horizontal axis indicates the total interaction time, with
successive intervals of up to 2⌧ for measurement of Jx , Jy and Jz, respectively. Results are
shown for squeezing from a thermal state and also from

|9i0
0 := | + ji⌦N/2 ⌦ |� ji⌦N/2. (19)

We obtain ⇠ 2
s = 0.32 and ⇠ 2

s = 0.20 for the completely mixed initial atomic state and for (19),
respectively. Remarkably, the QND interaction can be solved exactly for the initial state (19), as
shown in the appendix. The results are presented in figure 2. In that calculation we find that, for
large N , time t ⇠ ⌧ ⇥ J 0.25 gives (1Jx)

2 ⇠
p

J and the two halves of the atoms remain almost
fully polarized into the +z and �z directions, respectively. For much longer times, the two halves
are not fully polarized any more. In particular, for t ⇠ ⌧2 := ⌧ ⇥

p
J , we obtain (1Jx)

2 ⇠ 1, and
⇠ 2

s = 1
2 . Thus, we have squeezing even in the long-time (von Neumann) limit.

3.3. Model including losses

We now incorporate decoherence, following ideas from [13, 14, 17], adapted to our use of a
correlation matrix of all the three spin components. In particular, a parameter ⌘ describes the
probability that an atom suffers spontaneous excitation due to the off-resonant probe and thus
describes the fraction of atoms that decohere during the QND process. For simplicity, we assume
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