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Interaction-based quantum metrology showing
scaling beyond the Heisenberg limit
M. Napolitano1, M. Koschorreck1, B. Dubost1,2, N. Behbood1, R. J. Sewell1 & M. W. Mitchell1

Quantum metrology aims to use entanglement and other quantum
resources to improve precision measurement1. An interferometer
using N independent particles to measure a parameter X can
achieve at best the standard quantum limit of sensitivity, dX /
N21/2. However, using N entangled particles and exotic states2,
such an interferometer3 can in principle achieve the Heisenberg
limit, dX / N21. Recent theoretical work4–6 has argued that inter-
actions among particles may be a valuable resource for quantum
metrology, allowing scaling beyond the Heisenberg limit.
Specifically, a k-particle interaction will produce sensitivity dX /
N2k with appropriate entangled states and dX / N2(k21/2) even

without entanglement7. Here we demonstrate ‘super-Heisenberg’
scaling of dX / N23/2 in a nonlinear, non-destructive8,9 measure-
ment of the magnetization10,11 of an atomic ensemble12. We use fast
optical nonlinearities to generate a pairwise photon–photon inter-
action13 (corresponding to k 5 2) while preserving quantum-noise-
limited performance7,14. We observe super-Heisenberg scaling over
two orders of magnitude in N, limited at large numbers by higher-
order nonlinear effects, in good agreement with theory13. For a
measurement of limited duration, super-Heisenberg scaling allows
the nonlinear measurement to overtake in sensitivity a comparable
linear measurement with the same number of photons. In other
situations, however, higher-order nonlinearities prevent this cross-
over from occurring, reflecting the subtle relationship between
scaling and sensitivity in nonlinear systems. Our work shows that
interparticle interactions can improve sensitivity in a quantum-
limited measurement, and experimentally demonstrates a new
resource for quantum metrology.

The most precise instruments are interferometric in nature, and
operate according to the laws of quantum mechanics. A collection of
particles, for example photons or atoms, is prepared in a superposition
state, allowed to evolve under the action of a Hamiltonian containing
an unknown parameter,X , and measured in agreement with quantum
measurement theory. The complementarity of quantum measure-
ments15 determines the ultimate sensitivity of these instruments.

Here we describe polarization interferometry, used, for example, in
opticalmagnetometrytodetectatomicmagnetization11,16,17; similartheory
describes other interferometers3. A collection of N photons, with circular
plus- and minus-polarization eigenstates, j1æ and j2æ, is described by
single-photon Stokes operators ŝi~(1=2) zj i, {j ið Þsi zh j, {h jð ÞT,
where si (i 5 x, y, z) are the Pauli matrices, s0 is the identity and a
superscript ‘T’ denotes transposition. In traditional quantum metrology,
a Hamiltonian of the form Ĥ~BX

PN
j~1 ŝ jð Þ

z , where B denotes Planck’s
constant divided by 2p, uniformly and independently couples the
photons toX , the parameter to be measured1. If the input state consists
of independent photons, the possible precision scales as dX!N{1=2,
the shot noise or standard quantum limit (SQL). The factor of N21/2

reflects the statistical averaging of independent results. In contrast,
entangled states can be highly, even perfectly, correlated, giving pre-
cision limited by dX!N{1, the Heisenberg limit.

The above Hamiltonian is conveniently written Ĥ~BX Ŝz , where
Ŝi:

PN
j~1 ŝ jð Þ

i is a collective variable describing the net polarization of
the photons. The independence of the photons manifests itself in the
linearity of this Hamiltonian. Recently, it has been shown that inter-
actions among particles, or, equivalently, nonlinear Hamiltonians, can
contribute to measurement sensitivity and give scaling beyond the
Heisenberg limit4. For example, a Hamiltonian Ĥ~BX Ŝk

z , that is, with
a kth-order nonlinearity in Ŝ:(Ŝx,Ŝy,Ŝz), contains k-photon inter-
action terms ŝ j1ð Þ

z 6ŝ j2ð Þ
z 6 � � �6ŝ jkð Þ

z . The number of such terms, and,
thus, the signal strength, grows as Nk, but the quantum noise from the
input states is unchanged. As a result, a sensitivity limit of dX!N{k

applies when entanglement is used, and dX!N{ k{1=2ð Þ in the
absence of entanglement7. For k $ 2, this gives scaling better than
the Heisenberg limit, so-called super-Heisenberg scaling7. We note
that interactions and entanglement are compatible and both improve
the scaling. The predicted advantage applies generally to quantum
interferometry, and proposed mechanisms to produce metrologically
relevant interactions include Kerr nonlinearities18, cold collisions in
condensed atomic gases7, Duffing nonlinearity in nanomechanical
resonators19 and a two-pass effective nonlinearity with an atomic
ensemble20. Topological excitations in nonlinear systems may also give
advantageous scaling21.

In this Letter, we study interaction-based quantum metrology using
unentangled probe particles. One challenge in demonstrating super-
Heisenberg scaling is to engineer a suitable nonlinear Hamiltonian.
Some nonlinearities have been shown to be intrinsically noisy14

whereas others give super-Heisenberg scaling but fall short of the ideal,
dX!N{ k{1=2ð Þ, under realistic conditions7,22. We use a cold atomic
ensemble as a light–matter quantum interface12 to produce quantum-
noise-limited interactions, and use a Hamiltonian of the form
Ĥ~BX Ŝz Ŝ0~BX ŜzN=2. This Hamiltonian gives a polarization rota-
tion that increases with photon number, without increasing quantum
noise7. The experiment, shown schematically in Fig. 1, uses pulses of
near-resonant light to measure the collective spin, F̂, of an ensemble of
NA < 106 cold rubidium-87 atoms, probed on the 5S1/2 R 5P3/2 D2

line. The experimental system is described in detail in refs 8, 23. The
on-axis atomic magnetization, F̂z

� �
, which plays the role of X in this

measurement, is prepared in the initial state F̂z
� �

~NA by optical
pumping with resonant, circularly polarized light propagating along
the trap axis, z. A weak, on-axis magnetic field is applied to preserve F̂z

during the measurements.
Pulses of Ŝx-polarized, but not entangled, photons pass through the

ensemble and experience an optical rotation proportional to F̂z
� �

. The

light–atom interaction Hamiltonian Ĥef f ~a 1ð ÞF̂z Ŝzzb 1ð ÞF̂zŜzN=2
describes this paramagnetic Faraday rotation13. Both the linear term,
a 1ð ÞF̂z Ŝz , and the nonlinear term, b 1ð ÞF̂zŜzN=2, cause rotation of the
plane of polarization from Ŝx (vertical) towards Ŝy (diagonal).
Detection of Ŝy then allows estimation of F̂z . As described in Sup-
plementary Information, a(1) and b(1) depend on the optical detuning,
D, relative to the F 5 1 R F9 5 0 transition; in particular, a(1)(D0) 5 0
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for the specific detuning D0 < 2p3 468.5 MHz, allowing a purely non-
linear estimation to be studied.

The rotation angle is w~ F̂z
� �

½A(D)zB(D)N�=2, where A / a(1)

and B / b(1) both account for the temporal pulse shape and the geo-
metric overlap between the atomic density and the spatial mode of the
probe. The shot-noise-limited uncertainty in the rotation angle, due to
quantum uncertainty in the initial angle, isdw 5 N21/2/2. A contribution,

F̂z
� �

B(D)dN=2, from initial number fluctuations dN 5 ÆNæ21/2 is neg-
ligible for small rotation angles. This gives a measurement uncertainty of

dFz~ F̂z
� � dw

w
~

1
A(D)N1=2zB(D)N3=2

ð1Þ

indicating a transition from SQL scaling, dFz / N21/2, to super-
Heisenberg scaling dFz / N23/2 with increasing N.

We use two probing regimes. The ‘linear probe’ consists of 40 1-ms
pulses (total illumination time, tL 5 40ms) spread over 400ms with
detuning DL ? D0. Together with the number of photons, NL, used
in the experiment for the linear probe, this gives A ? NLB, that is,
linear estimation, and provides8 a projection-noise-limited quantum
non-demolition measurement24 of F̂z , with uncertainty at the parts-
per-thousand level8. The ‘nonlinear probe’ consists of a single,
Gaussian-shaped, high-intensity pulse with a full-duration at half-
maximum of tNL 5 54 ns, NNL photons and a detuning D0, such that
A = NNLB. Crucially, having two probes allows us to calibrate the
nonlinear measurement precisely using a highly sensitive and well-
characterized independent measurement of the same sample.

We probe the same sample three times for each preparation. First we
use the linear probe, which gives a precise and non-destructive mea-
surement of F̂z

� �
via the rotation angle, wL. Then we use the nonlinear

probe, which gives a rotation angle, wNL, that is calibrated against the
‘true’ value (that is, with negligible error) provided by the linear probe.
Finally we use a second linear probe to estimate the rotation angle wL9,
with which we can estimate the damage to the atomic magnetization,
g ; 1 2 wL9/wL, caused by the nonlinear probe.

The linear probe is calibrated using quantitative absorption imaging
to measure NA, and we find that A(DL) 5 3.3(1) 3 1028 rad per atom.
The calibration of the nonlinear probe against the first linear probe is
shown in Fig. 2: We repeat the above pump–probe sequence while
varying NA in the range 1.5 3 105 to 3.5 3 105 to generate a wL-vs-wNL

correlation plot for a given value of NNL. Because both wL and wNL are
linear in NA, we use linear regression to find the slope, b 5 dwNL/
dwL 5 B(D0)NNL/A(DL), for that value of NNL. The experiment is
repeated for a range of different NNL values.

The observed plot of b versus NNL, shown in Fig. 2a, is well fitted by a
simple model including saturation of the nonlinear response:

dwNL

dwL
~

B(D0)NNL

A(DL)

1

1zNNL=N satð Þ
NL

ð2Þ

Here N satð Þ
NL ~6:0 8ð Þ| 107 is a saturation parameter and the non-

linear coupling strength is B(D0) 5 3.8(2) 3 10216 rad per atom per
photon.

The noise in the nonlinear probe, again as a function of NNL, is
determined from the wL-vs-wNL correlation plots. As illustrated in
Fig. 2b, c, the residual standard deviation of the fits indicates the
observed uncertainty, DwNL, which includes the intrinsic uncertainty,
dwNL, and a small contribution from electronic noise. In Fig. 3, we plot
the fractional sensitivity, dF NLð Þ

z = F̂z
� �

, versus NNL, calculated using
equation (2) and considering the whole polarized ensemble, with

F̂z
� �

~7|105 spins. In agreement with equation (1), the log–log slope
indicates the scaling dF NLð Þ

z !N{3=2
NL to within experimental un-

certainties in the range NNL 5 106 to 107, and super-Heisenberg scal-
ing, that is, steeper than N21, over two orders of magnitude
(NNL 5 5 3 105 to 5 3 107).

Results of numerical modelling using the Maxwell–Bloch equations
to describe the nonlinear light–atom interaction are also shown in
Fig. 3. Two curves are shown, for detunings D0 6 (2p3 200 kHz),
covering the combined uncertainty in D due to the probe laser line-
width and inhomogeneous light shifts in the optical dipole trap. As
expected from equation (1), this alters the sensitivity only at low NNL

values. The model is described in detail in Supplementary Information.
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Figure 1 | Atom–light interface. a, Experimental schematic: an ensemble of
7 3 105 87Rb atoms, held in an optical dipole trap, is prepared in the state
| F 5 1, mF 5 1æ by optical pumping (OP). Linear (P1, P2) and nonlinear (PNL)
Faraday rotation probe pulses (in the order P1, PNL, P2) measure the atomic

magnetization, detected by a shot-noise-limited polarimeter (PM). The atom
number is measured by quantitative absorption imaging (AI). b, Spectral
positions of the pump, probe and imaging light on the D2 transition.
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Figure 2 | Calibration of nonlinear Faraday rotation. a, Ratio of the
nonlinear rotation, wNL, to the linear rotation, wL, versus the nonlinear probe
photon number, NNL. The data points and error bars indicate best-fit and
standard errors from a linear regression, wNL 5 bwL 1 const., for given values of
NNL. The red curve is a fit using equation (2), showing the expected nonlinear
behaviour, wNL / NNL, with some saturation for large values of NNL. b, c, wL-vs-
wNL correlation plots for two values of NNL. The atom number, NA, is varied to
produce a range of wL and wNL values. Green, no atoms (NA 5 0); red,
1.5 3 105 , NA , 3.5 3 105; blue, NA < 7 3 105. The blue circles are shown as a
check on detector saturation, and are not included in the analysis.
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For photon numbers above NNL<2|107, the saturation of the non-
linear rotation alters the slope. This can be understood as optical
pumping of atoms into states other than jF 5 1, mF 5 1æ by the non-
linear probe. The damage to the atomic magnetization, g 5 1 2 wL9/wL,
also shown in Fig. 3, remains small, confirming the non-destructive
nature of the measurement. The finite damage even for small NNL

values is possibly due to stray light and/or magnetic fields disturbing
the atoms during the 20-ms period between the two linear measure-
ments. For large N, higher-order nonlinear effects including optical
pumping limit the range of super-Heisenberg scaling.

The experimental results illustrate the subtle relationship between
scaling and sensitivity in a nonlinear system. For an ideal nonlinear
measurement, the improved scaling would guarantee better absolute
sensitivity for sufficiently large N values. Indeed, when the measure-
ment bandwidth is taken into account, the nonlinear probe overtakes
the linear one at N 5 3.2 3 106, where both achieve a sensitivity of
1.1 3 102 spins Hz21/2. As a consequence, the nonlinear technique
performs better in fast measurements. In contrast, when measurement
time is not a limited resource, the comparison can be made on a
‘sensitivity-per-measurement’ basis and the ideal crossover point, of
3.2 3 103 spins at N 5 8.7 3 107, is never actually reached, owing to the
higher-order nonlinearities. Evidently, super-Heisenberg scaling allows
but does not guarantee enhanced sensitivity: for the nonlinear tech-
nique to overtake the linear, it is also necessary that the scaling extend to
large enough values of N. This example shows also that resource con-
straints dramatically influence the comparison between the linear and
nonlinear techniques. See also Supplementary Information.

We have experimentally realized a system designed to achieve
metrological sensitivity beyond the Heisenberg limit, dX!N{1, using
metrologically relevant interactions among particles. To generate pair-
wise photon–photon interactions, we use fast, nonlinear optical effects
in a cold atomic ensemble and measure the ensemble magnetization,

F̂z

� �
, with super-Heisenberg sensitivity dFz / N23/2. To quantify the

photon–photon interaction and the sensitivity rigorously, we calibrate
against a precise, non-destructive, linear measurement of the same
atomic quantity8, demonstrate quantum-noise-limited performance
of the optical instrumentation and place an upper limit on systematic,
that is, non-atomic, nonlinearities at the level of a few per cent. The
experiment demonstrates the use of interparticle interactions as a new
resource for quantum metrology. Although possible applications to
precision measurement will require detailed study, our experiment

shows that interactions can produce super-Heisenberg scaling and
improved precision in a quantum-limited measurement.

METHODS SUMMARY
Linear and nonlinear probe light. The probe beam is aligned on the axis of the
trap with a waist of 20mm, chosen to match the radial dimension of the cloud. In
the linear probing regime, we use a train of 40 1-ms pulses, with a repetition rate of
100 kHz, each containing 3 3 106 photons detuned by 11.5 GHz from the
F 5 1 R F9 5 0 transition. The maximum intensity is 0.1 W cm22. The signals
are summed and can be considered a single, modulated pulse.

The nonlinear probe consists of a single, Gaussian-shaped pulse with a full-
duration at half-maximum of 54 ns. The maximum intensity of the nonlinear
probe is 7 W cm22 for a pulse with 107 photons. Theory predicts that a(1) 5 0 at
a detuning of D 5 2p3 462 MHz in free space. This is modified by trap-induced
light shifts, and we use the empirical value D0 5 2p3 468.5 MHz, which gives zero
rotation at low probe intensity.
Instrumental noise. The instrumental noise is quantified by measuring var(Ŝy)
versus input photon number N (that is, NL or NNL), in the absence of atoms, to find
contributions from electronic noise (V(el) / N0), shot noise (N1) and technical
noise (/N2), as described in Supplementary Information. We find that the con-
tributions from electronic noise to the linear (V elð Þ

L ) and nonlinear (V elð Þ
NL ) probes are

3 3 105 and 4 3 105 per pulse, respectively, and that the technical noise is negligible.
The instrumentation is thus shot-noise-limited over the full range of N used in the
experiment. The intrinsic rotation uncertainty of the nonlinear probe, dwNL, is
calculated from the measured DwNL as dwNLð Þ2~ DwNLð Þ2{V elð Þ

NL . The correction
is at most 5%.
Instrumental linearity. The linearity of the experimental system and analysis is
verified by using a wave plate in place of the atoms to produce a linear rotation
equal to the largest observed nonlinear rotation. Over the full range of photon
numbers used in the experiment, the detected rotation angle is constant to within
5%, and SQL scaling is observed.

Received 31 July; accepted 15 December 2010.

1. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96,
010401 (2006).

2. Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase
measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

3. Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod.
Opt. 49, 2325–2338 (2002).

4. Boixo, S., Flammia, S. T., Caves, C. M. & Geremia, J. Generalized limits for single-
parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007).

5. Choi, S. & Sundaram, B. Bose-Einstein condensate as a nonlinear Ramsey
interferometer operating beyond the Heisenberg limit. Phys. Rev. A 77, 053613
(2008).

6. Roy, S. M. & Braunstein, S. L. Exponentially enhanced quantum metrology. Phys.
Rev. Lett. 100, 220501 (2008).

7. Boixo, S. et al. Quantummetrology: dynamics versusentanglement.Phys.Rev. Lett.
101, 040403 (2008).

8. Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Sub-projection-noise
sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602
(2010).

9. Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Quantum
nondemolition measurement of large-spin ensembles by dynamical decoupling.
Phys. Rev. Lett. 105, 093602 (2010).

10. Kominis, I., Kornack, T., Allred, J. & Romalis, M. A subfemtotesla multichannel
atomic magnetometer. Nature 422, 596–599 (2003).

11. Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007).
12. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and

atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).
13. Napolitano, M. & Mitchell, M. W. Nonlinear metrology with a quantum interface. N.

J. Phys. 12, 093016 (2010).
14. Fleischhauer, M., Matsko, A. B. & Scully, M. O. Quantum limit of optical

magnetometry in the presence of ac Stark shifts. Phys. Rev. A 62, 013808 (2000).
15. Scully, M.O., Englert,B.G.& Walther, H.Quantumoptical tests of complementarity.

Nature 351, 111–116 (1991).
16. Wasilewski, W. et al. Quantum noise limited and entanglement-assisted

magnetometry. Phys. Rev. Lett. 104, 133601 (2010).
17. Wolfgramm, F. et al. Squeezed-light optical magnetometry. Phys. Rev. Lett. 105,

053601 (2010).
18. Beltrán, J. & Luis, A. Breaking the Heisenberg limit with inefficient detectors. Phys.

Rev. A 72, 045801 (2005).
19. Woolley, M. J., Milburn, G. J. & Caves, C. M. Nonlinear quantum metrology using

coupled nanomechanical resonators. N. J. Phys. 10, 125018 (2008).
20. Chase, B. A., Baragiola, B. Q., Partner, H. L., Black, B. D. & Geremia, J. M.

Magnetometry via a double-pass continuous quantum measurement of atomic
spin. Phys. Rev. A 79, 062107 (2009).

21. Negretti, A., Henkel, C. & Mølmer, K. Quantum-limited position measurements of a
dark matter-wave soliton. Phys. Rev. A 77, 043606 (2008).

0.1

δF(NL)/〈Fz〉
Theory

η

Shot noise scaling 

Heisenberg scaling

SH scaling

0.1 1 5

1

10

0.1

1

Photon number, NNL (107)

S
e
n

s
it
iv

it
y,

 δ
F(

N
L

) /
 F

z〉

D
a
m

a
g

e
, η

〈

Figure 3 | Super-Heisenberg scaling. Fractional sensitivity, dF NLð Þ
z = F̂z
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the nonlinear probe plotted versus the number of interacting photons, NNL.
Blue circles indicate the measured sensitivity, orange curves show results of
numerical modelling, and the black lines indicate SQL, Heisenberg-limit and
super-Heisenberg (SH) scaling for reference. Scaling surpassing the Heisenberg
limit, /N{1

NL , is observed over two orders of magnitude. The measured damage
to the magnetization, g, shown as green circles, confirms the non-destructive
nature of the measurement. Error bars for standard errors would be smaller
than the symbols and are not shown.
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