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Abstract. An extensive debate on quantum non-demolition (QND) measure-
ment, reviewed in Grangier et al (1998 Nature 396 537), finds that true QND
measurements must have both non-classical state-preparation capability and non-
classical information-damage tradeoff. Existing figures of merit for these non-
classicality criteria require direct measurement of the signal variable and are
thus difficult to apply to optically-probed material systems. Here we describe a
method to demonstrate both criteria without need for to direct signal measure-
ments. Using a covariance matrix formalism and a general noise model, we com-
pute meter observables for QND measurement triples, which suffice to compute
all QND figures of merit. The result will allow certified QND measurement of
atomic spin ensembles using existing techniques.
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1. Introduction

A quantum non-demolition (QND) measurement is one which provides information about
a quantum variable while leaving it unchanged and accessible for future measurements.
The approach was originally suggested as a means to avoid measurement back-action in
gravitational wave detection [1-5]. QND measurements of optical fields both provided the
first demonstrations and led to a considerable refinement of the understanding of QND
measurements in practice [6]. More recently, QND measurements have been employed to
prepare spin-squeezed atomic states [7—11] and with nano-mechanical systems [12].

In a generic QND measurement, a ‘meter’ and a ‘system’ variable interact via a selected
Hamiltonian. The meter can then be directly measured to gain indirect information about
the system. In the context of continuous-variable optical QND measurements, the question
of when a measurement should be considered QND has been much discussed (see [6] and
references therein). Two distinct non-classicality criteria emerge: A state preparation criterion
requires small uncertainty in the system variable after the measurement while a second criterion
describes the information-damage tradeoff in the measurement. While some operations such
as filtering or optimal cloning can be non-classical in one or the other criterion, a true QND
measurement is non-classical in both [6]. Similar criteria have been developed for discrete-
variable systems such as qubits [13], but are outside the scope of this article.

With the aid of figures of merit [14—16] describing the quantum-classical boundary, optical
QND measurements satisfying both criteria have been demonstrated [15, 17-25]. These figures
of merit make use of the fact that the optical signal beam, after the QND measurement, can
be verified by a direct, i.e. destructive, measurement with quantum-noise-limited sensitivity.
Direct measurement of the system variable is typically not available in atomic QND. Instead,
repeated QND measurement has been used to show the state preparation criterion [8—11, 26]
by conditional variance measurements. Here we show how repeated QND measurements can
also be used to test the information-damage tradeoff, and thus to certify full QND performance
without direct access to the system variable.
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2. Model

As in the pioneering work by Kuzmich et al [7, 27], we consider the collective spin of an atomic
ensemble, described by the vector angular momentum operator J. We note that a variety of
other physical situations are described in the same way, e.g. by using a pseudo-spin to describe
a clock transition [9]. The optical polarization of any probe pulse is described by a vector Stokes
operator S

S; =1ia'ga, (D

i =x,y, z where o; are the Pauli matrices, a = {a,, a_}T and a. are annihilation operators for
circular-plus and circular-minus polarizations.

We define Stokes operators P, Q for the first and second pulses, respectively. The operators
J, P, Q each obey the angular momentum commutation relation [Lx, Ly] =1L, and cyclic
permutations (for simplicity, we take /7 = 1). For notational convenience, we define the
combined optical variables C = P © Q and the total variable T = J @ C. We will be interested in
the average values of these operators, which we write as J = (J) and similar, and the covariance
matrices, which we write as

J=LIAT+AADT =D AD) 2)

and similar. We assume Gaussian states with amplitudes >> 1. In this scenario the averages
and covariances fully describe the system. Our approach follows Madsen and Mglmer
[28] but treats all spin and polarization components, as developed in [29, 30].

We assume that the input probe pulses are polarized as P = Q™ = §(" and that the
other average components are zero. Similarly, J (i — | J| while other average components are
zero. We take the initial covariance matrix for the system to be

Th=J&C. 3)
This form of the covariance matrix allows for arbitrary prior correlations (including correlated
technical noise) among the two optical pulses, but no prior correlations between the atoms and

either optical pulse.
The interaction is described by an effective Hamiltonian

Heff:ngSza (4)

where g is a constant [31].

This QND interaction, to lowest order in gz, where t is the interaction time of the pulse
and atoms, produces a rotation of the state, T©"Y = T — iz [T H.4]. This has the effect of
imprinting information about J; on the light without changing J, itself:

S}(}out) — S}(}in) +K'/S)(Cin) Jz(in)’ (5)

Jy(out) — Jy(in) +K/Jx(in) S;in) (6)
and

oW _ (in) %

for any variable O ¢ {S,, J,}, i.e. including J,. Here k"= g7 and S is P or Q depending on
which pulse—atom interaction is being described. The rotation can be described by a linear
transformation

T(Out) — MPT(il’l) (8)
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and thus
T = MpT™MT, )

where Mp is equal to the identity matrix, apart from the elements (Mp)s e = ’C/J_S"), and
(Mp)s; = 'S, For later convenience, we define k = k'S = gz S,
The effect of the second pulse is described by the matrix My = XpoMpX po Where

100
Xpo=|0 0 1|®L (10)
010

exchanges the roles of P and Q, and /5 is the 3 x 3 identity matrix.

3. Reduction of uncertainty by quantum non-demolition (QND) measurement

We first consider the case in which the interaction does not introduce additional noise (although
both the input atomic and optical states may be noisy). After interaction with the first pulse, but
before the arrival of the second pulse, the state is described by Tp = Mp TOMIT,. A component
P, of the first pulse is measured. Formally, this corresponds to projection along the axis

mp ={0,0,0,0,1,0,0,0,0}T, and Tp is reduced to

TPD = TP — TP(HQTPHQ)MPT;,F = Tp — TPHQT;/TI'[HQTP], (11)

where Ty, =mp Amp is the projector describing the measurement and ()M indicates the
Moore—Penrose pseudo-inverse.

We can directly calculate the resulting variance of J,

Cao

E[Var(-]z)lpy] = (Tpp)sz = J3,3m-

(12)
This has a natural interpretation: the variance of the detected projection P, has two
contributions: x2J 3.3 from the atomic signal and C 2.2 from the pre-existing optical noise. J 3318
reduced by the factor 1/(1 + SNR) where SNR is the signal-to-noise ratio of the measurement.
A similar result is found in [28]. This post-measurement variance of the signal variable describes
the state-preparation capability of the QND measurement. Absent the ability to directly measure
J,, we must look for observables which contain this same information.

4. Observable correlations

After interaction with both the first and second pulses, we have Tpo = MyTpM o~ This matrix
contains the variances and correlations that are directly measurable, namely those of the two
light pulses. These are

VaI'(Py) = 62,2+K2j3,3, (13)
Var(Qy) = 65,5 +K2j3,3, (14)
COV(Py, Qy):éz,5+K2j3,3. (15)

New Journal of Physics 14 (2012) 085021 (http://www.njp.org/)


http://www.njp.org/

5 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

We note that for x = 0, e.g. if the atoms are removed, the values are

varna (Py) = Caa, (16)
varna(Q,) = Cs s, (17)
covna(Py, Qy) = Cas. (18)

We see that the state preparation capability can be expressed in terms of measurable
quantities as

varna (Py)
var(Py)

which uses the variance of the two measurements to determine the SNR. Another formulation,

E[var(J,)|P,] = J33 (19)

~ VaI'NA(Py)
Efvar(J)|Py] = J33 (20)
VarNA(Py) +COV(Py, Qy) - COVNA(Py, Q})
expresses the residual variance in terms of the atomic contribution to the correlation between
first and second pulses.
These simple expressions are only valid for noise-free interactions, however. In a real
experiment, other effects are present which introduce both noise and losses in the atomic and
optical variables. We now account for these other effects.

5. General noise and loss

We now consider noise produced in the atom-light interaction itself, as well as losses. The noise
model we employ is very general. The interaction of the first pulse with the atoms is described
by (see appendix)

Tp=MpToM} + Np, 21)

where Np is a matrix describing noise in the first pulse. We assume that the coherent part
of the interaction is Mp =r I3 ®r. I3 ® I; apart from the elements (Mp) 6=k J ™, and
(Mp)s3 = —KSSH)-

Here r4, r; describe the fraction of atoms and photons, respectively, that remain after the
interaction. Thus Mp includes both the effect of H.¢ and linear losses. We leave Np completely
general, except that it does not affect Q: Np = N © 0173, where N is a six-by-six symmetric
matrix.

Similarly, we describe interaction with the second pulse as

Tro=MoTpM}+ Ny, (22)

where MQ = XPQMPXPQ and NQ = XPQNPXPQ.

Note that we assume that both the interaction M and the noise N are the same for the
first and second pulses (but act on different variables, naturally). This implies that optical
characteristics of the pulses such as detuning from resonance are the same, a condition that
can be achieved in experiments. It also assumes that the noise generated by the interaction is
incoherent and state-independent, as opposed to a more general, state-dependent noise N (J, S).
Nevertheless, in many situations J and S are nearly constant (only small quantum components
change appreciably), so that any reasonable N (J, S) would be effectively constant.
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As above, we can directly calculate Tpp and TPQ to find

(krpJ33+ N3s)>

E[var(J.)|Py] = J33r2 + N33 — — ~ (23)
‘ ’ 304 >3 K2J3,3+F%C2’2+N5’5
and
var(P,) = r;Caa+x*J35+ Nss, (24)
var(Qy) ="265,5+K2(”i]~3,3+N3,3)+N5,5, (25)
cov(Py, Q,) =r2Cas+k*(ratss+ N3 s/K). (26)
Equation (16) still holds for the case with no atoms. We define
dvar(Py) = var(Py) — VarNA(Py)rz, 27)
Svar(Q,) = var(Q,) — varxa (Q,)r7, (28)
6COV(Pyv Qy) = COV(P)H Qy) - COVNA(Py, Qy)rz’ (29)
where the r; factors are included to account for atom-induced optical losses.
It is then simple to check that
. N scov3(Q,, P))
Elvar(J,)|Py] = J33+k dvar(Qy) —évar(Py) — ———— ). (30)
' var(Py)

We note that the QND measurement reduces the variance of J, if the quantity in parentheses
is negative, i.e. if

8cov3(Qy, Py) > var(Py)[8var(Q,) — dvar(P,)]. (31)

Again, there is an intuitive explanation: dcov(Q,, P,), which arises from the fact that both
pulses measure the same atomic variable J,, is a measure of the atom-light coupling.
[dvar(Q,) — § var(P,)] expresses the difference in atom-induced noise between the first and
second pulses. This difference indicates a change in the atomic state, namely an increase in
var(J;). The condition of equation (31) compares these two effects and can be tested knowing
the statistics of the various measurements on S, and the optical transmission r;. The factors
K2, J 3.3 1n equation (30) must be determined by independent means. For example, « can be
found by measuring the rotation of a state with known (J,) # 0 and J 3.3 from the number of
atoms, or the observed noise scaling of a known state [32, 33].

6. Three-pulse experiments

The above description of two-pulse experiments can be extended straightforwardly to three or
more pulses [29]. While a two-pulse experiment, plus prior knowledge of x and J 3.3, gives
sufficient information to find the post-measurement variance, and thus test the state-preparation
property, a three-pulse experiment is required to find the other quantities used to characterize
QND measurements.

If R denotes the Stokes vector of the third probe pulse, then statistics such as var(R,) and
cov(Py, Ry) can be determined, and these in turn provide enough constraints to determine the
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loss and noise. Expanding our systemto T =J &P & Q @ R, and defining interaction and noise
operators M, Ny in the obvious way, a direct calculation finds several useful relations

dcov(Py, Ry)

" Seon Py, 0 o
ri= fszziig};))_—ivvjr((%;’ (33)
K2Ns3 3 = Svar(Q,) — var(P,) +k*J55 (1 —r3), (34)
KN35 = 8cov(Py, Q,) — k> J 3374, (35)
Ns.s = 8var(P,) — k*J3.3. (36)

7. Measures of QND performance

To quantify QND performance, Holland e al use the degree of correlation between various
combinations of the input and output system variable X = J, and meter variable Y =S,
variables [14]. They define three figures of merit, each of which is unity for an ideal QND
measurement. These describe the measurement quality, the preservation of the initial value, and
the state preparation capability, respectively:

CZ_ _ COVZ(Xin, Yout) _ KZ‘z%’?) _ K2j3,3 (37)
XV var(Xmyvar(Y")  Jyo(Tp)ss  var(Py)’
CZin = COV2<Xina Xout) S rfl {%,3 ,
XX var(X™)var(X°)  Ji5(Tp)ss
. K2j3’3(SCOV2(Py, Ry) (38)
Scov2(Py, Q,)[8var(Q,) — 8var(Py) +k2J35]
C}z(oul yout = COVZ(Xout’ Yout) = —= (TP)%’S
’ var(X°)var(Y")  (Tp)35(Tp)s.s
Scovi(Py, Qy) (39)

- var(P,)[8var(Qy) — Svar(Py) +k2J33]

8. Non-classicality criteria

Roch et al [15] and Grangier et al [16] define non-classicality criteria using the conditional
variance AXSZW, as in equation (30), and the quantities AX,zn, the measurement noise referred
to the input and AXSZ, the excess noise introduced into the system variable. All are normalized
by the intrinsic quantum noise of the system variable, a quantity which may depend on the
system or the application. For example, in a spin-squeezing context the natural noise scale

is J o= 1{J)/2= J 3.3, the J, variance of the input x-polarized coherent spin state, i.e. the
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projection noise. Here we choose to normalize A X2 by Jo, and AX3,. AX;byr, Jo, reflecting

the reduction in size of the spin due to losses in the measurement process. The relation of
information gained to damage caused is non-classical if AX;AX,, < 1. We find

Elvar(J,)|P,]
2 _ y
AXG, = —
I"AJO

Scov(Py, Q,) yv scovi(P,, Q)
= Seov(P,. R, | W00 —8var(Py) — —— =" ) | 40
scov(P,, R,) (k" Jo) var(Q,) — dvar(Py) var(y) (40)
AX? = éz,zf’zj‘Ns,s _ var(Py) —~K2j3’3’ )

KZJO K2.]0
AX = (Tp)3,3~— J33 _ dcov(Py, Q,)[évar(Q,) — 8var(Py)]. @)

rado Scov(Py, Ry)/czjo

9. Conclusions

Using the covariance matrix formalism and a general noise model, we have shown that full
certification of QND measurements is possible without direct access to the system variable
under study. We find that repeated probing of the same system gives statistical information
sufficient to quantify both the state preparation capability and the information-damage tradeoft.
The results enable certification of true QND measurement of material systems, and are directly
applicable to ongoing experiments using QND measurements for quantum information [31] and
quantum-enhanced metrology [33-35].
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Appendix

We derive equation (21) considering an extended pulse and using temporal sectioning, as
described in [28, 29]. We divide the pulse duration into sections or time-slices i =1, ..., M.,
with input and output Stokes operators S, §©ut) respectively and o € {x, y, z}. We label the
input and output atomic variables at the corresponding times J ™9 Jut) By allowing M. to
be large, we can avoid artifacts due to the discrete-time nature of the model. The variables
appearing in equation (21) are the aggregate variables S0 = Y M glin.i)  glout) — §~Msec glout)
and Jogin) = Jogin,l), Joﬁout) = Jogout’MSEC)~
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Using equation (4) we find input-output relations, as in equation (5), but now we include
noise operators NO) and amplitude decay via factors r4, r, which describe the remaining
amplitude after a pulse. We write

S}(}out,i) _ rL(S;in,i) +K//S§in,i)JZ(in,i)) +N§?’ (A.1)

Jy(out,i) — r:‘/Msec(J;in,i) +K//J)£in,i)SZ(in,i)) +N§i) (A.2)
and

0D = (/M| )OI + N (A3)

for all variables O ¢ {S,, J,}, i.e. including J., and where (A|B) is A or B for atomic or optical
variables, respectively. The atomic variable J, accumulates noise as

Jz(in,i+l) _ Jz(out,i) — ri‘/Msec Jz(in) + Xl: ,,X*J')/MsecN;Zj)’ (A4)
j=1
so that
i-1
S;out,i) =7 S;in,i) +K//S)(Cin,i) r/(;—l)/MsecJZFin) + Z NX) + N;iv)‘ (A.5)
j=1

Computing the aggregate variables we find

SO =rp [ SIV +k"SIE T 4 k"SI 5’) +> N, (A.6)
> )2

Mbe(,
J;out) — rAJ)Em) +K//Jx(m) Z (i— 1)/Mse(.S(ln i) + Z N(l) (A7)

i i=1
where & = MseC Z o (l D/ Miee =rs—1)/[ Mg (rl/ Mice — 1)], which approaches unity for
ra — 1, and descrlbes the weighted accumulation of signal. Also,

Miec
O — (rA|rL)O§in) + Z N(i), (A.8)

i=1
for all other aggregate variables O. By construction, each segment of pulse contains the same
average number of photons, which are S,-polarized. The Sz(in’i) are thus independent zero-
mean random variables of equal variance var(S{™?) = var(S{") /M., so that their weighted

sum Y e ri” b/ M”“Séi“”') is a random variable with zero mean and variance var(S'V)&. As
such, the effect of non-unit r,4 is to alter the apparent light—atom coupling. Defining k" = k"&,
we recover the coupling of equation (5). Also, defining Np as the covariance matrix of the
noise vector n= Y .7 (N;”, N, NS, N{’, N§" + 16" SI (i — )N} /Myec, N), we arrive
to equation (21). o ) “ ‘ )

Additional material. The calculations described in this article can be performed in
Mathematica using the notebook ‘ThreePulseCMCalculator,” available as an ancillary file at
http://arxiv.org/abs/1203.6584.
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