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We study theoretically and experimentally the quantification of non-Gaussian distributions via non-

destructive measurements. Using the theory of cumulants, their unbiased estimators, and the uncertainties

of these estimators, we describe a quantification which is simultaneously efficient, unbiased by measure-

ment noise, and suitable for hypothesis tests, e.g., to detect nonclassical states. The theory is applied to

cold 87Rb spin ensembles prepared in non-Gaussian states by optical pumping and measured by

nondestructive Faraday rotation probing. We find an optimal use of measurement resources under realistic

conditions, e.g., in atomic ensemble quantum memories.
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Introduction.—Non-Gaussian states are an essential re-
quirement for universal quantum computation [1,2] and
several quantum communication tasks with continuous
variables, including improving the fidelity of quantum
teleportation [3] and entanglement distillation [4,5].
Optical non-Gaussian states have been demonstrated
[6–10] and proposals in atomic systems [11–14] are being
actively pursued. In photonic systems, histograms [15] and
state tomography [6,7,9,10] have been used to show non-
Gaussianity, but require a large number of measurements.
For material systems with longer time-scales these ap-
proaches may be prohibitively expensive. Here we demon-
strate the use of cumulants, global measures of distribution
shape, to show non-Gaussianity in an atomic spin en-
semble. Cumulants can be used to show nonclassicality
[16–18], can be estimated with few measurements and
have known uncertainties, a critical requirement for proofs
of nonclassicality.

Approach.—Quantification or testing of distributions has
features not encountered in quantification of observables.
For example, experimental measurement noise appears as a
distortion of the distribution that cannot be ‘‘averaged
away’’ by additional measurements. As will be discussed
later, the theory of cumulants naturally handles this situ-
ation. We focus on the fourth-order cumulant �4, the
lowest-order indicator of non-Gaussianity in symmetric
distributions such as Fock [19] and ‘‘Schrödinger kitten’’
states [7,11]. We study theoretically and experimentally
the noise properties of Fisher’s unbiased estimator of �4,
i.e., the fourth ‘‘k statistic’’ k4, and find optimal measure-
ment conditions. Because �4 is related to the negativity of
the Wigner function [16], this estimation is of direct rele-
vance to detection of nonclassical states. We employ quan-
tum nondemolition measurement, a key technique for
generation and measurement of nonclassical states in

atomic spin ensembles [20,21] and nanomechanical oscil-
lators [22].
Moments, cumulants, and estimators.—A continuous

random variable X with probability distribution function
PðXÞ is completely characterized by its moments �k �R
XkPðXÞdX or cumulants �n ¼ �n �P

n�1
k¼1ðn�1

k�1Þ�n�k�k,

where ðnkÞ is the binomial coefficient.

Since Gaussian distributions have �n>2 ¼ 0, estimation
of �4, (or �3 for nonsymmetric distributions), is a natural
test for non-Gaussianity. In an experiment, a finite sample
fX1 . . .XNg from P is used to estimate the �’s. Fisher’s
unbiased estimators, known as ‘‘k statistics’’ kn, give the
correct expectation values hkni ¼ �n for finite N [23].
Defining Sn ¼

P
iX

n
i we have

k3 ¼ ð2S31 � 3NS1S2 þ N2S3Þ=Nð2Þ; (1)

k4¼ð�6S41þ12NS21S2�3NðN�1ÞS22�4NðN�1ÞS1S3
þN2ðNþ1ÞS4Þ=Nð3Þ; (2)

where NðmÞ � NðN � 1Þ . . . ðN �mÞ.
We need the uncertainty in the cumulant estimation to

test for non-Gaussianity, or to compare non-Gaussianity
between distributions. For hypothesis testing and
maximum-likelihood approaches, we need the variances
of k3, k4 for a given P. These are found by combinatorial
methods and given in Ref. [23]:

var ðk3Þ ¼ �6=N þ 9Nð�2�4 þ �2
3Þ=Nð1Þ þ 6N2�3

2=Nð2Þ;
(3)

varðk4Þ ¼ �8=N þ 2Nð8�6�2 þ 24�5�3 þ 17�2
4Þ=Nð1Þ

þ 72N2ð�4�
2
2 þ 2�2

3�2Þ=Nð2Þ
þ 24N2ðN þ 1Þ�4

2=Nð3Þ: (4)
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It is also possible to estimate the uncertainty in k4 from
data fXg using estimators of higher order cumulants [23].
The efficiency of cumulant estimation is illustrated in
Fig. 1.

Measurement noise.—When the measured signal is
Z ¼ Xþ Y, where X is the true value and Y is uncorrelated
noise, the measured distribution is the convolution
PðZÞ ¼ PðXÞ � PðYÞ. The effect of this distortion on cu-
mulants is the following: for independent variables, cumu-

lants accumulate (i.e., add) [23], so that �ðZÞ
n ¼ �ðXÞ

n þ �ðYÞ
n ,

where �ðQÞ
n , kðQÞ

n indicate �n, kn for distribution PðQÞ. The
extremely important case of uncorrelated, zero-mean

Gaussian noise, �ðYÞ
2 ¼ �2

Y and other cumulants zero, is

thus very simple: �ðZÞ
n ¼ �ðXÞ

n except for �ðZÞ
2 ¼ �ðXÞ

2 þ �2
Y .

Critically, added Gaussian noise does not alter the ob-
served �3, �4.

Experimental system and state preparation.—We test
this approach in a highly realistic experiment in order to
understand the role of experimental imperfections by esti-
mating classical non-Gaussian spin distributions in an
atomic ensemble, similar to ensemble systems being de-
veloped for quantum networking with non-Gaussian states
[24]. The collective spin component Fz is measured by
Faraday rotation using optical pulses (where z is the optical

propagation axis). The detected Stokes operator is SðoutÞy ¼
SðinÞy þGNLFz=2, whereG is a coupling constant,NL is the

number of photons, and SðinÞy is the input Stokes operator,
which contributes quantum noise. In the above formulation

X ¼ Fz, Y ¼ 2SðinÞy =ðGNLÞ and Z ¼ 2SðoutÞy =ðGNLÞ.

The experimental system is described in detail in refer-
ences [21,25,26]. An ensemble of �106 87Rb atoms is
trapped in an elongated dipole trap made from a weakly
focused 1030 nm beam and cooled to 25 �K. A nondes-
tructive measurement of the atomic state is made using
pulses of linearly polarized light detuned 800 MHz to the
red of the F ¼ 1 ! F0 ¼ 0 transition of the D2 line and
sent through the atoms in a beam matched to the transverse
cloud size. The pulses are of 1 �s duration, contain
3:7� 106 photons on average, and are spaced by 10 �s
to allow individual detection. The 240:1 aspect ratio of the
atomic cloud creates a strong paramagnetic Faraday inter-
action with measured coupling G � 6� 10�8 rad=spin.

After interaction with the atoms, SðoutÞy is detected with a
shot-noise-limited (SNL) balanced polarimeter in the
�45� basis. NL is measured with a beam-splitter and
reference detector before the atoms. The probing-plus-
detection system is shot-noise-limited above
3� 105 photons=pulse. Previous work with this system
has demonstrated QND measurement of the collective
spin Fz with an uncertainty of �500 spins [21,26].
We generate Gaussian and non-Gaussian distributions

with the following strategy: we prepare a ‘‘thermal state’’
(TS), an equal mixture of the F ¼ 1, mF ¼ �1,0,1 ground
states, by repeated unpolarized optical pumping between
the F ¼ 1 and F ¼ 2 hyperfine levels, finishing in F ¼ 1
[26]. By the central limit theorem, the TS of 106 atoms is
nearly Gaussian with hFzi ¼ 0 and varðFzÞ ¼ �2 ¼
2NA=3. By optical pumping with pulses of circularly po-
larized light we displace this to hFzi ¼ �, with negligible

change in varðFzÞ [27], to produce P�ðFzÞ ¼ ð� ffiffiffiffiffiffiffi
2�

p Þ�1 �
exp½�ðFz � �Þ2=ð2�2Þ	. By displacing different TS alter-
nately to �þ and ��, we produce an equal statistical

mixture of the two displaced states, PðNGÞ
� ðFzÞ ¼

½P�þðFzÞ þ P��ðFzÞ	=2. With properly chosen ��,
PðNGÞ
� ðFzÞ closely approximates marginal distributions of

mixtures of n ¼ 0,1 Fock states and m ¼ N, N � 1 sym-
metric Dicke states. The experimental sequence is shown
in Fig. 2.
Detection, analysis, and results.—For each preparation,

100 measurements of Fz are made, with readings (i.e.,
estimated Fz values by numerical integration of the mea-

sured signal)mi ¼ 2Sðout;iÞy =NðiÞ
L . Because the measurement

is nondestructive and shot-noise limited, we can combine
NR readings in a ‘‘meta pulse’’, i.e., a train of individual
pulses, with reading M � P

mi. Varying the number of
individual pulses combined in this way, we vary the total
number of photons and thus the sensitivity of the meta-
pulse, while preserving the quantum noise features [26].

These readings have the distribution P��ðMÞ ¼
exp½�ðM� ��Þ2=ð2�2

MÞ	=ð�M

ffiffiffiffiffiffiffi
2�

p Þ where the variance
�2

M ¼ �2
AN

02
A N

2
R þ �2

R includes atomic noise �2
AN

02
A and

readout noise, �2
R ¼ NR=NL with N0

A ¼ NA=N
MAX
A . The

variance �2
A is determined from the scaling of varðMÞ with

FIG. 1 (color online). Simulated estimator k4 as a function
of sample size N. (a) (insets) black curves show quadrature
distributions of states � ¼ ð1� pÞj0ih0j þ pj1ih1j, scaled
to unit variance, and six N ¼ 1000 histograms (offset for clarity)
for p ¼ 0 (green), 1=3 (brown), 1=2 (blue) and 2=3 (red).
(b) Ten realizations of k4 versus N drawn from each of the

four distributions. Shaded regions show �4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðk4Þ

p
, from

Eqs. (2) and (4). With N ¼ 1000, k4 distinguishes p ¼ 1=2
(blue) from p ¼ 0 (green, Gaussian) with >7� significance,
even though the histograms look similar ‘‘to the eye.’’ This
shows the efficiency relative to histogram-based detection [15].
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NA andNR, as in [26]. The readout noise can be varied over
2 orders of magnitude by appropriate choice ofNR. For one
probe pulse and the maximum number of atoms we have
�2

R=�
2
A ¼ 84:7.

To produce a non-Gaussian distribution, we compose
metapulses from NR samples drawn from displaced ther-
mal state (DM½�þ	 or DM½��	) preparations with equal

probability, giving distribution PðNGÞ
� ðMÞ ¼ ½P�þðMÞ þ

P��ðMÞ	=2. With �M � ð�þ � ��Þ=2, the distribution

has �2nþ1 ¼ 0, �2¼�2
Mþ�2

M, �4¼�2�4
M, �6 ¼ 16�6

M,
�8 ¼ �272�8

M. Our ability to measure the non-
Gaussianity is determined by hk4i ¼ �4 and from Eq. (4)

varðk4Þ ¼ 136N�8
M=Nð1Þ � 144N2�4

Mð�2
M þ �2

MÞ2=Nð2Þ
þ 24N2ðN þ 1Þð�2

M þ �2
MÞ4=Nð3Þ: (5)

As shown in Fig. 3, the experimentally obtained values
agree well with theory, and confirm the independence from
measurement noise.

The ‘‘signal-to-noise ratio’’ for �4, S ¼ �4
2=varðk4Þ, is

computed using Eq. (5), �4 ¼ �2�4
M, and experimental

�M, NR, �R, is shown as curves in Fig. 4. We can confirm
this S experimentally by computing SN � hk4i2=varðk4Þ
using k4 values derived from several realizations of the
experiment, each sampling PNG

� N times. In the limit of

many realizations SN ! S. We employ a bootstrapping

technique: From 100 samples of PðNGÞ
� ðMÞ for given pa-

rameters�M,NR andNA, we derive 33N ¼ 20 realizations
by random sampling without replacement, and compute
hk4i and varðk4Þ on the realizations. As shown in Fig. 4,
reasonable agreement with theory is observed over a wide
range of parameters. Without evaluating still higher order
statistics it is difficult to say if the remaining differences
are statistical or systematic.

FIG. 2 (color online). Experimental sequence: The experimen-
tal sequence divides into distinct tasks. Baseline acquisition:
prepare the thermal state and probe to measure the residual
rotation. Displace and measure (DM½�	): prepare the thermal
state, displace by � and probe. Thanks to atom loss at each
thermalization, the atom number is varied by repeating DM
several times. Measure number of atoms NA: by pumping the
atoms into F ¼ 1, mF ¼ 1 and probing we measure the number
of atoms in the trap. To correct for drifts, a sequence without
displacement (DM[0]) is performed every 11 runs. We perform
the sequence varying the displacement to acquire a dataset of

quantum-noise-limited measurements of PðNGÞ
� ðSðoutÞy Þ for differ-

ent �. The duration of a single displace and measure event is
about 1 ms, comparable to quantum memory storage times [28],
and orders of magnitude longer than the ns or ps time-scales
typical of optical quantum state preparation [6,15].

FIG. 3 (color online). Measured and predicted k4 with resid-
uals for non-Gaussian distributions of different �. Readout noise
is varied by the choice of NR. Data is normalized to NR and �A.
Top: Points show normalized �k4 calculated from N ¼ 100
preparations of the ensemble with different � (horizontal axis),
and NR (colors). Black line indicates expected ��4, red line

(top) shows ��4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðk4Þ

p
calculated from the distribution

parameters for the largest readout noise. Some points have
negative values and are not shown because of the logarithmic

scale. Bottom: normalized residuals ð�k4þ �4Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðk4Þ

p
. The

normalization is done with the expected varðk4Þ for each NR.
Measured k4 agrees well with theory, in particular, measurement
noise increases the observed variance, but not the expectation.

FIG. 4 (color online). Signal-to-noise in estimation of �4 ver-
sus readout noise for different �0 ¼ �M=ðNR�AÞ. Points show
measurement results, lines show theory. (details in the text)
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Optimum estimation of non-Gaussian distributions.—
Finally, we note that in scenarios where measurements
are expensive relative to state preparation (as might be
the case for QND measurements of optical fields or for
testing the successful storage of a single photon in a
quantum memory), optimal use of measurement resources
(e.g. measurement time) avoids both too few preparations
and too few probings.

We consider a scenario of practical interest for quantum
networking: a heralded single-photon state is produced and
stored in an atomic ensemble quantum memory. Assuming

the ensemble is initially polarized in the X̂ direction, the
storage process maps the quadrature components X, P onto
the corresponding atomic spin operators XA, PA / Fz,
�Fy, respectively. QND measurements of Fz are used to

estimate XA, and thus the non-Gaussianity of the stored
single photon. Because of imperfect storage, this will have
the distribution of a mixture of n ¼ 0 and n ¼ 1 Fock
states: � ¼ ð1� pÞj0ih0j þ pj1ih1j. For a quadrature X,

we have the following probability distribution PpðXÞ ¼
exp½�x2=ð2�2

0Þ	ðpx2=�2
0 þ 1� pÞ=ð ffiffiffiffiffiffiffi

2�
p

�0Þ, where �0

is the width of the n ¼ 0 state.
Taking in account the readout noise �2

R, the cumulants
are �odd ¼ 0, �2 ¼ ð2pþ 1Þ�2

H þ �2
R, �4 ¼ �12p2�4

H,
�6 ¼ 240p3�6

H, �8 ¼ �10 080p4�8
H, where the readout

noise �2
R is included as above. Here, �4 is directly related

to the classicality of the state, since p > 0:5 implies a
negative Wigner distribution [19].

For a fixed total number of measurement resources
NMNR, an optimal distribution of resources per measure-
ment NR exists as shown in Fig. 5. With increasing NR, the
signal-to-noise first increases due to the improvement of
the measurement precision. Then, once the increased mea-
surement precision no longer gives extra information about
k4, the precision decreases due to reduced statistics be-
cause of the limited total number of probes. For a large
total number of measurements, we can derive a simplified

expression of this optimum. We derive asymptotic expres-
sions of S: SL (SH) for �R 
 �0 (�R � �0). The optimal
NR is found by solving SL ¼ SR giving �8

R �
�8

0ð1þ 8p� 12p2 þ 48p3 � 24p4Þ. For this optimal �R,

the measurement noise is in the same order of magnitude as
the characteristic width of the non-Gaussian distribution.
Conclusion.—The cumulant-based methods described

here should be very attractive for experiments with non-
Gaussian states of material systems such as atomic ensem-
bles and nanoresonators, for which the state preparation
time is intrinsically longer, and for which measurement
noise is a greater challenge than in optical systems.
Cumulant-based estimation is simultaneously efficient, re-
quiring few preparations and measurements, accommo-
dates measurement noise in a natural way, and facilitates
statistically-meaningful tests, e.g., of nonclassicality.
Experimental tests with a cold atomic ensemble demon-
strate the method in a system highly suitable for quantum
networking, while the theory applies equally to other
quantum systems of current interest.
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